SECTION 6

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)

WARNING:

For vehicles equipped with Supplemental Restraint (Air Bag) System:

- Service on and around the air bag system components or wiring must be performed only by an authorized SUZUKI dealer. Refer to "Air Bag System Components and Wiring Location View" under "General Description" in air bag system section in order to confirm whether you are performing service on or near the air bag system components or wiring. Please observe all WARNINGS and "Service Precautions" under "On-Vehicle Service" in air bag system section before performing service on or around the air bag system components or wiring. Failure to follow WARNINGS could result in unintentional activation of the system or could render the system inoperative. Either of these two conditions may result in severe injury.
- Technical service work must be started at least 90 seconds after the ignition switch is turned to the "LOCK" position and the negative cable is disconnected from the battery. Otherwise, the system may be activated by reserve energy in the Sensing and Diagnostic Module (SDM).

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI for G10)	6-1
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI for G13)	6-1-1
ENGINE MECHANICAL (G10)	6A-1
ENGINE MECHANICAL (G13 1 cam 16 valves)	6A1-1
ENGINE COOLING	6B-1
ENGINE FUEL	6C-1
ENGINE AND EMISSION CONTROL SYSTEM (TBI for G10)	6E1-1
ENGINE AND EMISSION CONTROL SYSTEM (SFI for G13)	6E2-1
IGNITION SYSTEM (G10 ENGINE)	6F-1
IGNITION SYSTEM (G13 ENGINE)	6F1-1
CRANKING SYSTEM	6G-1
CHARGING SYSTEM	6H-1
EXHAUST SYSTEM	6K-1

NOTE:

For the descriptions for vehicle without warm up three way catalytic converter (WUTWC), refer to Section 6 and 6E1 of the Service Manual mentioned in the FOREWORD of this manual.

CONTENTS

GENERAL INFORMATION	6-3
Statement on Cleanliness and Care	6-3
General Information on Engine Service	6-3
Precaution on Fuel System Service	6-4
Fuel Pressure Relief Procedure	6-5
Fuel Leakage Check Procedure	6-5
	6-6

General Description	6-6
On-Board Diagnostic System	6-6
Precaution in Diagnosing Trouble	6-9
Engine Diagnostic Flow Table	6-10
Customer Problem Inspection From	6-12
Malfunction Indicator Lamp Check	6-13
Diagnostic Trouble Code Check	6-13

6

Diagnostic Trouble Code Clearance	6-14
Diagnostic Trouble Code Table	6-15
Fail-safe Table	6-18
Visual Inspection	6-19
Engine Basic Inspection	6-20
Engine Diagnosis Table	6-22
Scan Tool Data	6-29
Scan Tool Data Definitions	6-31
Inspection of ECM (PCM) and Its Circuits	6-33
Voltage Check	6-33
Resistance Check	6-37
Component Location	6-38
Table A-1 MIL Circuit Check	0.00
(Lamp does not come on)	6-39
Table A-2 MIL Circuit Check	
(Lamp remains ON)	6-40
Table A-3 ECM (PCM) Power and Ground	
Circuit Check	6-42
DTC P0105 MAP Circuit Malfunction	6-44
DTC P0110 IAT Circuit Malfunction	6-46
DTC P0115 ECT Circuit Malfunction	6-48
DTC P0120 Throttle Position Circuit	
Malfunction	6-50
DTC P0121 Throttle Position Circuit	
Range/Performance Problem	6-52
DTC P0130 HO2S Circuit Malfunction	0 54
	6-54
DIC P0133 HO25 CIFCUIT SIOW	6 56
DTC D0135 HO2S Hostor Circuit	0-50
Malfunction (Sensor-1)	6-57
DTC P0136 HO2S Circuit Malfunction	0.01
(Sensor-2)	6-59
DTC P0141 HO2S Heater Circuit	
Malfunction (Sensor-2)	6-62
DTC P0171 Fuel System Too Lean	6-64
DTC P0172 Fuel System Too Rich	6-64
DTC P0300 Random Misfire Detected	6-68
DTC P0301 Cylinder 1 Misfire Detected .	6-68
-	

DTC P0302 Cylinder 2 Misfire Detected .	6-	68
DTC P0303 Cylinder 3 Mistire Detected . DTC P0335 CKP Sensor Circuit	6-	68
Malfunction DTC P0340 CMP Sensor Circuit	6-	72
Malfunction	6-	74
DTC P0420 Catalyst System Efficiency Below Threshold	6-	76
DTC P0443 Purge Control Valve Circuit Malfunction	6-	79
DTC P0480 Radiator Fan Control System Malfunction	6-	80
DTC P0500 Vehicle Speed Sensor Malfunction (M/T)	6-	82
DTC P0500 Vehicle Speed Sensor Malfunction (A/T)	6-	84
DTC P0505 Idle Control System Malfunction	6-	86
DTC P0510 Closed Throttle Position Switch Malfunction	6-	88
DTC P0601 Internal Control Module Memory Check Sum Error	6-	89
DTC P1250 EFE Heater Circuit	0	00
DTC P1450 Barometric Pressure	6-	90
Sensor Low/High Input	6-	92
DTC P1451 Barometric Pressure Sensor Performance Problem	6-	92
DTC P1500 Engine Starter Signal	Ũ	02
Circuit Malfunction	6-	93
DTC P1510 ECM (PCM) Back-up Power Supply Malfunction	6-	٩٨
Table B-1 Fuel Injector Circuit Check	6-	96
Table B-2 Fuel Pump and Its Circuit	0	00
	6-	98
Table B-3 Fuel Flessure Check	6.4	100
Table B-5 Power Steering Pressure	0-	102
Switch Signal Circuit Check	6-´	103
SPECIAL TOOL	6-′	104

GENERAL INFORMATION STATEMENT ON CLEANLINESS AND CARE

An automobile engine is a combination of many machined, honed, polished and lapped surfaces with tolerances that are measured in the thousands of an millimeter (ten thousands of an inch).

Accordingly, when any internal engine parts are serviced, care and cleanliness are important.

Throughout this section, it should be understood that proper cleaning and protection of machined surfaces and friction areas is part of the repair procedure. This is considered standard shop practice even if not specifically stated.

- A liberal coating of engine oil should be applied to friction areas during assembly to protect and lubricate the surfaces on initial operation.
- Whenever valve train components, pistons, piston rings, connecting rods, rod bearings, and crankshaft journal bearings are removed for service, they should be retained in order.

At the time of installation, they should be installed in the same locations and with the same mating surfaces as when removed.

• Battery cables should be disconnected before any major work is performed on the engine.

Failure to disconnect cables may result in damage to wire harness or other electrical parts.

• Throughout this manual, the four cylinders of the engine are identified by numbers; No.1 (1), No.2 (2) and No.3 (3) counted from crankshaft pulley side to flywheel side.

GENERAL INFORMATION ON ENGINE SERVICE

THE FOLLOWING INFORMATION ON ENGINE SERVICE SHOULD BE NOTED CAREFULLY, AS IT IS IMPORTANT IN PRE-VENTING DAMAGE, AND IN CONTRIBUTING TO RELIABLE EN-GINE PERFORMANCE.

- When raising or supporting engine for any reason, do not use a jack under oil pan. Due to small clearance between oil pan and oil pump strainer, jacking against oil pan may cause it to be bent against strainer resulting in damaged oil pick-up unit.
- It should be kept in mind, while working on engine, that 12-volt electrical system is capable of violent and damaging short circuits.

When performing any work where electrical terminals can be grounded, ground cable of the battery should be disconnected at battery.

• Any time the air cleaner, throttle body or intake manifold is removed, the intake opening should be covered. This will protect against accidental entrance of foreign material which could follow intake passage into cylinder and cause extensive damage when engine is started.

PRECAUTION ON FUEL SYSTEM SERVICE

- Work must be done with no smoking, in a well-ventilated area and away from any open flames.
- As fuel feed line (between fuel pump and fuel delivery pipe) is still under high fuel pressure even after engine was stopped, loosening or disconnecting fuel feed line directly may cause dangerous spout of fuel to occur where loosened or disconnected.

Before loosening or disconnecting fuel feed line, make sure to release fuel pressure according to "FUEL PRESSURE RELIEF PROCEDURE". A small amount of fuel may be released after the fuel line is disconnected. In order to reduce the chance of personal injury, cover the fitting to be disconnected with a shop cloth. Put that cloth in an approved container when disconnection is completed.

- Never run engine with fuel pump relay disconnected when engine and exhaust system are hot.
- Fuel or fuel vapor hose connection varies with each type of pipe. When reconnecting fuel or fuel vapor hose, be sure to connect and clamp each hose correctly referring to left figure Hose Connection.

After connecting, make sure that it has no twist or kink.

- When installing injector or fuel delivery pipe, lubricate its O-ring with spindle oil or gasoline.
- When connecting fuel pipe flare nut, first tighten flare nut by hand and then tighten it to specified torque.

FUEL PRESSURE RELIEF PROCEDURE

CAUTION:

This work must not be done when engine is hot. If done so, it may cause adverse effect to catalyst.

After making sure that engine is cold, release fuel pressure as follows.

- Place transmission gear shift lever in "Neutral" (Shift selector lever to "P" range for A/T model), set parking brake, and block drive wheels.
- 2) Remove relay box cover.
- 3) Disconnect fuel pump relay (1) from relay box (2).
- 4) Remove fuel filler cap to release fuel vapor pressure in fuel tank and then reinstall it.
- 5) Start engine and run it till it stops for lack of fuel. Repeat cranking engine 2-3 times for about 3 seconds each time to dissipate fuel pressure in lines. Fuel connections are now safe for servicing.
- 6) Upon completion of servicing, connect fuel pump relay to relay box and install relay box cover.

FUEL LEAKAGE CHECK PROCEDURE

After performing any service on fuel system, check to make sure that there are no fuel leakages as follows.

1) Turn ON ignition switch for 2 seconds (to operate fuel pump) and then turn it OFF.

Repeat this (ON and OFF) 3 or 4 times and apply fuel pressure to fuel line. (till fuel pressure is felt by hand placed on fuel feed hose.)

2) In this state, check to see that there are no fuel leakages from any part of fuel system.

ENGINE DIAGNOSIS

GENERAL DESCRIPTION

This vehicle is equipped with an engine and emission control system which are under control of ECM (PCM). The engine and emission control system in this vehicle are controlled by ECM (PCM). ECM (PCM) has an On-Board Diagnostic system which detects a malfunction in this system and abnormality of those parts that influence the engine exhaust emission. When diagnosing engine troubles, be sure to have full understanding of the outline of "On-Board Diagnostic System" and each item in "Precaution in Diagnosing Trouble" and execute diagnosis according to "ENGINE DIAGNOSTIC FLOW TABLE".

There is a close relationship between the engine mechanical, engine cooling system, ignition system, exhaust system, etc. and the engine and emission control system in their structure and operation. In case of an engine trouble, even when the malfunction indicator lamp (MIL) doesn't turn ON, it should be diagnosed according to this flow table.

ON-BOARD DIAGNOSTIC SYSTEM

ECM (PCM) in this vehicle has following functions.

- When the ignition switch is turned ON with the engine at a stop, malfunction indicator lamp (MIL) (1) turns ON to check the bulb of the malfunction indicator lamp (1).
- When ECM (PCM) detects a malfunction which gives an adverse effect to vehicle emission while the engine is running, it makes the malfunction indicator lamp (1) in the meter cluster of the instrument panel turn ON or flash (flashing only when detecting a misfire which can cause damage to the catalyst) and stores the malfunction area in its memory.

(If it detects that continuously 3 driving cycles are normal after detecting a malfunction, however, it makes MIL (1) turn OFF although DTC stored in its memory will remain.)

- As a condition for detecting a malfunction in some areas in the system being monitored by ECM (PCM) and turning ON the malfunction indicator lamp (1) due to that malfunction, 2 driving cycle detection logic is adopted to prevent erroneous detection.
- When a malfunction is detected, engine and driving conditions then are stored in ECM (PCM) memory as freeze frame data. (For the details, refer to description on Freeze frame data.)
- It is possible to communicate by using not only SUZUKI scan tool (Tech-1) (2) but also generic scan tool. (Diagnostic information can be accessed by using a scan tool.)

Warm-up Cycle

A warm-up cycle means sufficient vehicle operation such that the coolant temperature has risen by at least $22^{\circ}C$ ($40^{\circ}F$) from engine starting and reaches a minimum temperature of $70^{\circ}C$ ($160^{\circ}F$).

Driving Cycle

A "Driving Cycle" consists of engine startup, driving mode where a malfunction would be detected if present and engine shutoff.

2 Driving Cycles Detection Logic

The malfunction detected in the first driving cycle is stored in ECM (PCM) memory (in the form of pending DTC and freeze frame data) but the malfunction indicator lamp does not light at this time. It lights up at the second detection of same malfunction also in the next driving cycle.

Pending DTC

Pending DTC means a DTC detected and stored temporarily at 1 driving cycle of the DTC which is detected in the 2 driving cycles detection logic.

Freeze Frame Data

ECM (PCM) stores the engine and driving conditions (in the from of data as shown at the left) at the moment of the detection of a malfunction in its memory. This data is called "Freeze frame data". Therefore, it is possible to know engine and driving conditions (e.g., whether the engine was warm or not, where the vehicle was running or stopped, where air/fuel mixture was lean or rich) when a malfunction was detected by checking the freeze frame data. Also, ECM (PCM) has a function to store each freeze frame data for three different malfunctions in the order as the malfunction is detected. Utilizing this function, it is possible to know the order of malfunctions that have been detected. Its use is helpful when rechecking or diagnosing a trouble.

Priority of freeze frame data:

ECM (PCM) has 4 frames where the freeze frame data can be stored. The first frame stores the freeze frame data of the malfunction which was detected first. However, the freeze frame data stored in this frame is updated according to the priority described below. (If malfunction as described in the upper square "1" below is detected while the freeze frame data in the lower square "2" has been stored, the freeze frame data "2" will be updated by the freeze frame data "1".)

PRIORITY	FREEZE FRAME DATA IN FRAME 1		
1	Freeze frame data at initial detection of malfunction among misfire detected (P0300-P0303), fuel system too lean (P0171) and fuel system too rich (P0172)		
2	Freeze frame data when a malfunction other tha those in "1" above is detected		

An Example of Freeze Frame Data 1 Trouble Code P0102 (1st) 782 RPM 2. Engine Speed 3. Eng Cool Tmp. 80°C 4. Vehicle Spd. 0 km/h 5. MAP Sensor 39 kPa 6. St. Term FT1 - 0.8% Lean 7. Lg. Term FT1 - 1.6% Lean 8. Fuel 1 Stat. Closed Loop 9. Fuel 2 Stat. Not used 10. Load value 25.5%

1st, 2nd or 3rd in parentheses here represents which position in the order the malfunction is detected.

In the 2nd through the 4th frames, the freeze frame data of each malfunction is stored in the order as the malfunction is detected. These data are not updated.

Shown in the table below are examples of how freeze frame data are stored when two or more malfunctions are detected.

\geq	FRAME	FRAME 1	FRAME 2	FRAME 3	FRAME 4
M. DI	ALFUNCTION ETECTED ORDER	FREEZE FRAME DATA to be updated	1st FREEZE FRAME DATA	2nd FREEZE FRAME DATA	3rd FREEZE FRAME DATA
	No malfunction	No freeze frame da	ata		
1	P0400 (EGR) detected	Data at P0400 detection	Data at P0400 detection	-	-
2	P0171 (Fuel system) detected	Data at P0171 detection	Data at P0400 detection	Data at P0171 detection	_
3	P0300 (Misfire) detected	Data at P0171 detection	Data at P0400 detection	Data at P0171 detection	Data at P0300 detection
4	P0301 (Misfire) detected	Data at P0171 detection	Data at P0400 detection	Data at P0171 detection	Data at P0300 detection

Freeze frame data clearance:

The freeze frame data is cleared at the same time as clearance of diagnostic trouble code (DTC).

Data Link Connector (DLC)

DLC (1) is in compliance with SAEJ1962 in its installation position, the shape of connector and pin assignment.

Serial data line (K line of ISO 9141) is used for SUZUKI scan tool (Tech-1) or generic scan tool to communicate with ECM (PCM). SUZUKI serial data line is used for SUZUKI scan tool (Tech-1) to communicate with ABS control module and air bay SDM.

PRECAUTION IN DIAGNOSING TROUBLE

- Don't disconnect couplers from ECM (PCM), battery cable from battery, ECM (PCM) ground wire harness from engine or main fuse before confirming diagnostic information (DTC, freeze frame data, etc.) stored in ECM (PCM) memory. Such disconnection will erase memorized information in ECM (PCM) memory.
- Diagnostic information stored in ECM (PCM) memory can be cleared as well as checked by using SUZUKI scan tool (Tech-1) or generic scan tool. Before using scan tool, read its Operator's (Instruction) Manual carefully to have good understanding as to what functions are available and how to use it.
- Priorities for diagnosing troubles.

If two or more DTCs are stored, proceed to the flow table of the DTC which has detected earliest in the order and follow the instruction in that table.

If no instructions are given, troubleshoot diagnostic trouble codes according to the following priorities.

- Diagnostic trouble codes (DTCs) other than DTC P0171/ P0172 (Fuel system too lean/too rich) and DTC P0300/ P0301/P0302/P0303 (Misfire detected)
- 2. DTC P0171/P0172 (Fuel system too lean/too rich)
- 3. DTC P0300/P0301/P0302/P0303 (Misfire detected)
- Be sure to read "Precautions for Electrical Circuit Service" in Section 0A before inspection and observe what is written there.
- ECM (PCM) Replacement

When substituting a known-good ECM (PCM), check for following conditions. Neglecting this check may cause damage to a known-good ECM (PCM).

- Resistance value of all relays, actuators is as specified respectively.
- MAP sensor and TP sensor are in good condition and none of power circuits of these sensors is shorted to ground.

ENGINE DIAGNOSTIC FLOW TABLE

Refer to the following pages for the details of each step.

STEP	ACTION	YES	NO
1	Customer Complaint Analysis1) Perform customer complaint analysis referring to the next page.Was customer complaint analysis performed?	Go to Step 2.	Perform customer complaint analysis.
 Diagnostic Trouble Code (DTC) and Freeze Frame Data Check, Record and Clearance 1) Check for DTC (including pending DTC) referring to the next page. Is there any DTC(s)? 		 Print DTC and freeze frame data or write them down and clear them by referring to "DTC Clearance" section. Go to Step 3. 	Go to Step 4.
3	Visual Inspection 1) Perform visual inspection referring to the next page. Is there any faulty condition?	 Repair or replace malfunction part. Go to Step 11. 	Go to Step 5.
4	Visual Inspection 1) Perform visual inspection referring to the next page. Is there any faulty condition?		Go to Step 8.
5	Trouble Symptom Confirmation 1) Confirm trouble symptom referring to the next page. Is trouble symptom identified?	Go to Step 6.	Go to Step 7.
6	6 Rechecking and Record of DTC/Freeze Frame Data 1) Recheck for DTC and freeze frame data referring to "DTC Check" section. Is there any DTC(s)?		Go to Step 8.
7	Rechecking and Record of DTC/Freeze Frame Data 1) Recheck for DTC and freeze frame data referring to "DTC Check" section. Is there any DTC(s)?		Go to Step 10.
8	 Engine Basic Inspection and Engine Diag. Table 1) Check and repair according to "Engine Basic Check" and "Engine Diag. Table" section. Are check and repair complete? 	Go to Step 11.	 Check and repair malfunction part(s). Go to Step 11.
9	Trouble shooting for DTC1) Check and repair according to applicable DTC diag. flow table.Are check and repair complete?		
10	Check for Intermittent Problems1) Check for intermittent problems referring to the next page.Is there any faulty condition?	 Repair or replace malfunction part(s). Go to Step 11. 	Go to Step 11.
11	 Final Confirmation Test 1) Clear DTC if any. 2) Perform final confirmation test referring to the next page. Is there any problem symptom, DTC or abnormal condition? 	Go to Step 6.	End.

1. CUSTOMER COMPLAINT ANALYSIS

Record details of the problem (failure, complaint) and how it occurred as described by the customer. For this purpose, use of such an inspection form will facilitate collecting information to the point required for proper analysis and diagnosis.

2. DIAGNOSTIC TROUBLE CODE (DTC)/FREEZE FRAME DATA CHECK, RECORD AND CLEARANCE

First, check DTC (including pending DTC), referring to "DTC check" section. If DTC is indicated, print it and freeze frame data or write them down and then clear them by referring to "DTC clearance" section. DTC indicates malfunction that occurred in the system but does not indicate whether it exists now or it occurred in the past and the normal condition has been restored now. To check which case applies, check the symptom in question according to Step 4 and recheck DTC according to Step 5.

Attempt to diagnose a trouble based on DTC in this step only or failure to clear the DTC in this step will lead to incorrect diagnosis, trouble diagnosis of a normal circuit or difficulty in troubleshooting.

NOTE:

If only Automatic transmission DTCs (P0705/P0720/P0753/P0758/P0751/P0756) or Immobilizer DTCs (P1620 – P1623) are indicated in this step, perform trouble diagnosis according to "Diagnosis" in Section 7B or Section 8G.

3. and 4. VISUAL INSPECTION

As a preliminary step, be sure to perform visual check of the items that support proper function of the engine referring to "Visual Inspection" section.

5. TROUBLE SYMPTOM CONFIRMATION

Based on information obtained in Step 1 Customer complaint analysis and Step 2 DTC/freeze frame data check, confirm trouble symptoms. Also, reconfirm DTC according to "DTC Confirmation Procedure" described in each DTC Diagnosis section.

6. and 7. RECHECKING AND RECORD OF DTC/FREEZE FRAME DATA

Refer to "DTC check" section for checking procedure.

8. ENGINE BASIC INSPECTION AND ENGINE DIAGNOSIS TABLE

Perform basic engine check according to the "Engine Basic Inspection Flow Table" first. When the end of the flow table has been reached, check the parts of the system suspected as a possible cause referring to ENGINE DIAGNOSIS FLOW TABLE and based on symptoms appearing on the vehicle (symptoms obtained through steps of customer complaint analysis, trouble symptom confirmation and/or basic engine check) and repair or replace faulty parts, if any.

9. TROUBLESHOOTING FOR DTC (See each DTC Diag. Flow Table)

Based on the DTC indicated in Step 5 and referring to the applicable DTC diag. flow table in this section, locate the cause of the trouble, namely in a sensor, switch, wire harness, connector, actuator, ECM (PCM) or other part and repair or replace faulty parts.

10. CHECK FOR INTERMITTENT PROBLEM

Check parts where an intermittent trouble is easy to occur (e.g., wire harness, connector, etc.), referring to "INTERMITTENT AND POOR CONNECTION" in Section 0A and related circuit of DTC recorded in Step 2.

11. FINAL CONFIRMATION TEST

Confirm that the problem symptom has gone and the engine is free from any abnormal conditions. If what has been repaired is related to the DTC, clear the DTC once, perform DTC confirmation procedure and confirm that no DTC is indicated.

CUSTOMER PROBLEM INSPECTION FORM (EXAMPLE)

User name:	Model:	VIN:	
Date of issue:	Date Reg.	Date of problem:	Mileage:

PROBLEM SYMPTOMS		
Difficult Starting	Poor Driveability	
No cranking	Hesitation on acceleration	
\Box No initial combustion	□ Back fire/□After fire	
No combustion	□ Lack of power	
Poor starting at	□ Surging	
(□cold □warm □always)	abnormal knocking	
Other	□ Other	
Poor Idling	Engine Stall when	
Poor fast idle	Immediately after start	
Abnormal idling speed	□ Accel. pedal is depressed	
(⊟High ⊟Low) (r/min.)	□ Accel. pedal is released	
Unstable	Load is applied	
\Box Hunting (r/min. to r/min.)	\square A/C \square Electric load \square P/S	
Other	Other	
	□ Other	
□ OTHERS:		

VEHICLE/ENVIRONMENTAL CONDITION WHEN PROBLEM OCCURS			
	Environmental Condition		
Weather Fair Cloudy Rain Snow Always Other Temperature Hot Warm Cool Cold (°F/ °C) Always Frequency Always Sometimes (times/ day, month) Only once Under certain condition Road Urban Suburb Highway Mountainous (Uphill Downhill) Tarmacadam Gravel			
Vehicle Condition			
Engine condition	□Cold □Warming up phase □Warmed up □Always □Other at starting □Immediately after start □Racing without load □Engine speed (r/min.)		
Vehicle condition	During driving: Constant speed Accelerating Decelerating Right hand corner Left hand corner When shifting (Lever position) At stop Vehicle speed when problem occurs (km/h, Mile/h) Other		

Malfunction indicator lamp condition	□Always ON □Sometimes ON □Always OFF □Good condition		
Diagnostic trouble	First check:	\Box No code \Box Malfunction code ()
code	Second check:	\Box No code \Box Malfunction code ()

NOTE:

The above form is a standard sample. It should be modified according to conditions characteristic of each market.

MALFUNCTION INDICATOR LAMP (MIL) CHECK

1) Turn ON ignition switch (but the engine at stop) and check that MIL lights.

If MIL does not light up (or MIL dims), go to "Diagnostic Flow Table A-1" for troubleshooting.

 Start engine and check that MIL turns OFF.
 If MIL remains ON and no DTC is stored in ECM (PCM), go to "Diagnostic Flow Table A-2" for troubleshooting.

DIAGNOSTIC TROUBLE CODE (DTC) CHECK

- 1) Prepare SUZUKI scan tool (Tech-1) or generic scan tool.
- 2) With ignition switch OFF, connect it to data link connector (DLC) (1) located on underside of instrument panel at driver's seat side.

Special Tool:

- (A): SUZUKI scan tool
- (B): Mass storage cartridge
- (C): 16/14 pin DLC cable
- 3) Turn ignition switch ON and confirm that MIL lights.
- 4) Read DTC, pending DTC and freeze frame data according to instructions displayed on scan tool and print it or write it down. Refer to scan tool operator's manual for further details. If communication between scan tool and ECM (PCM) is not possible, check if scan tool is communicable by connecting it to ECM (PCM) in another vehicle. If communication is possible in this case, scan tool is in good condition. Then check data link connector and serial data line (circuit) in the vehicle with which communication was not possible.
- 5) After completing the check, turn ignition switch off and disconnect scan tool from data link connector.

DIAGNOSTIC TROUBLE CODE (DTC) CLEARANCE

- 1) Connect SUZUKI scan tool (Tech-1) or generic scan tool to data link connector in the same manner as when making this connection for DTC check.
- 2) Turn ignition switch ON.
- 3) Erase DTC and pending DTC according to instructions displayed on scan tool. Refer to scan tool operator's manual for further details.
- 4) After completing the clearance, turn ignition switch off and disconnect scan tool from data link connector.

NOTE:

DTC and freeze frame data stored in ECM (PCM) memory are also cleared in following cases. Be careful not to clear them before keeping their record.

- When power to ECM (PCM) is cut off (by disconnecting battery cable, removing fuse or disconnecting ECM (PCM) connectors for 30 sec. or longer)
- When the same malfunction (DTC) is not detected again during 40 engine warm-up cycles.

DIAGNOSTIC TROUBLE CODE (DTC) TABLE

DTC NO.	DETECTING ITEM	DETECTING CONDITION (DTC will set when detecting:)	MIL
P0105	Manifold absolute pressure circuit malfunction	Low pressure-high vacuum-low voltage (or MAP sensor circuit shorted to ground) High pressure-low vacuum-high voltage (or MAP sensor circuit open)	1 driving cycle
P0110	Intake air temp. circuit malfunction	Intake air temp. circuit low input Intake air temp. circuit high input	1 driving cycle
P0115	Engine coolant temp. circuit malfunction	Engine coolant temp. circuit low input Engine coolant temp. circuit high input	1 driving cycle
P0120	Throttle position circuit malfunction	Throttle position circuit low input Throttle position circuit high input	1 driving cycle
P0121	Throttle position circuit performance problem	Poor performance of TP sensor	2 driving cycles
P0130	HO2S circuit malfunction (Sensor-1)	Min. output voltage of HO2S-higher than specification Max. output voltage of HO2S-lower than specification	2 driving cycles
P0133	HO2S circuit slow response (Sensor-1)	Response time of HO2S-1 output voltage between rich and lean is longer than specification.	2 driving cycles
P0135	HO2S heater circuit malfunction (Sensor-1)	Terminal voltage is lower than specification at heater OFF or it is higher at heater ON.	2 driving cycles
P0136	HO2S circuit malfunction (Sensor-2)	Max. voltage of HO2S-2 is lower than specification or its min. voltage is higher than specification	2 driving cycles
P0141	HO2S heater circuit malfunction (Sensor-2)	Terminal voltage is lower than specification at heater OFF or it is higher at heater ON. (or heater circuit or short)	2 driving cycles
P0171	Fuel system too lean	Short term fuel trim or total fuel trim (short and long terms added) is larger than specification for specified time or longer. (fuel trim toward rich side is large.)	2 driving cycles
P0172	Fuel system too rich	Short term fuel trim or total fuel trim (short and long term added) is smaller than specification for specified time or longer. (fuel trim toward lean side is large.)	2 driving cycles
P0300 P0301 P0302	Random misfire detected Cylinder 1 misfire detected	Misfire of such level as to cause damage to three way catalyst	MIL flashing during misfire detection
P0303	Cylinder 3 misfire detected	Misfire of such level as to deteriorate emission but not to cause damage to three way catalyst	2 driving cycles

DTC NO.	DETECTING ITEM	DETECTING CONDITION (DTC will set when detecting:)	MIL
P0335	Crankshaft position sensor circuit malfunction	No signal during engine running	1 driving cycle
P0340	Camshaft position sensor circuit malfunction	No signal for 2 sec. during engine cranking	1 driving cycle
P0420	Catalyst system efficiency below threshold	Output waveforms of HO2S-1 and HO2S-2 are similar. (Time from output voltage change of HO2S-1 to that of HO2S-2 is shorter than specification.)	2 driving cycles
P0443	EVAP Purge control valve circuit malfunction	Purge control valve circuit is open or shorted to ground	2 driving cycles
P0480	Radiator fan control circuit malfunction	Radiator cooling fan relay terminal voltage is low when cooling temp. is lower than specification	2 driving cycles
P0500	Vehicle speed sensor malfunction	No signal while running in "D" range or during fuel cut at decelerating	2 driving cycles
P0505	Idle control system malfunction	Throttle opening change is small as compared with electrically live time. Throttle valve opening is not within its target range with CTP switch ON or drive voltage exists though ECM (PCM) is not outputting ISC drive command.	1 driving cycle
P0510	Closed throttle position switch malfunction	Switch does not change from ON to OFF (or from OFF to ON) even when vehicle speed reaches over (or below) specification.	2 driving cycle
P1250	Early Fuel Evaporation Heater Circuit Malfunction	Heater monitor terminal voltage is higher than specified value when EFE OFF or it is lower than specified value when EFE ON.	2 driving cycles
P1450	Barometric pressure sensor circuit malfunction	Barometric pressure is lower or higher than specification. (or sensor malfunction)	1 driving cycle
P1451	Barometric pressure sensor performance problem	Difference between manifold absolute pressure (MAP sensor value) and barometric pressure (barometric pressure sensor value) is larger than specification during cranking.	2 driving cycles
P1500	Starter signal circuit malfunction	Starter signal is not inputted from engine cranking till its start and after or it is always inputted	2 driving cycles
P1510	ECM (PCM) backup power source malfunction	No backup power after starting engine	1 driving cycle

DTC NO.	DETECTING ITEM	DETECTING CONDITION (DTC will set when detecting:)	MIL	
P0705	Transmission range sensor (switch) circuit malfunction (A/T)	No signal or multiple signals inputted with shifted in "D" range	1 driving cycle	
P0720	Output speed sensor circuit malfunction (A/T)	No signal while running vehicle with "D" or "2" range.	1 driving cycle	
P0751	Shift solenoid A (#1) performance or stuck off	While running in "D" range, engine speed as	2 driving	
P0756	Shift solenoid B (#2) performance or stuck off	lower than specified value.	cycles	
P0753	Shift solenoid A (#1) electrical (A/T)	Output command from PCM and output	1 driving	
P0758	Shift solenoid B (#2) electrical (A/T)	shorted to ground or open)	cycle	
P1620	ECU code not registered			
P1621	No ECU code transmitted from Immobilizer Control Module	Refer to Section 8A.		
P1622	Fault in ECM (PCM)			
P1623	ECU code not matched			

FAIL-SAFE TABLE

When any of the following DTCs is detected, ECM (PCM) enters fail-safe mode as long as malfunction continues to exist but that mode is canceled when ECM (PCM) detects normal condition after that.

DTC NO.	DETECTED ITEM	FAIL-SAFE OPERATION
P0105	Manifold absolute pressure circuit malfunction	 ECM (PCM) uses value determined by throttle opening and engine speed. ECM (PCM) stops EVAP purge control.
P0110	Intake air temp. circuit malfunction	ECM (PCM) controls actuators assuming that intake air temperature is 20°C (68°F).
P0115	Engine coolant temp. circuit malfunction	 ECM (PCM) controls actuators assuming that engine coolant temperature is 80°C (176°F). ECM (PCM) operates radiator fan. ECM (PCM) stops A/C and idle speed control.
P0120	Throttle position circuit malfunction	 ECM (PCM) controls actuators assuming that throttle opening is 20°. ECM (PCM) stops idle speed control.
P0500	Vehicle speed sensor malfunction	ECM (PCM) stops idle air control.
P1450	Barometric pressure sensor low/ high input	ECM (PCM) controls actuators assuming that barometric pressure is 100 kPa (760 mmHg).

VISUAL INSPECTION

Visually check following parts and systems.

INSPECTION ITEM	REFERRING SECTION
● Engine oil – – – – – level, leakage	Section 0B
 Engine coolant – – – – level, leakage 	Section 0B
● Fuel – – – – level, leakage	Section 0B
● A/T fluid – – – – – level, leakage	Section 0B
 Air cleaner element – – – – dirt, clogging 	Section 0B
 Battery – – – – – fluid level, corrosion of terminal 	
 Water pump belt – – – – tension, damage 	Section 0B
 Throttle cable – – – – play, installation 	Section 6E1
 Vacuum hoses of air intake system – – – – disconnection, 	
looseness, deterioration, bend	
 Connectors of electric wire harness – – – – disconnection, friction 	
• Fuses – – – – – burning	Section 8
 Parts – – – – installation, bolt – – – – looseness 	
 Parts – – – – deformation 	
 Other parts that can be checked visually 	
Also check following items at engine start, if possible	
 Malfunction indicator lamp 	Section 6
Charge warning lamp —	Section 6H
 Engine oil pressure warning lamp 	Section 8 (section 6 for pressure check)
Engine coolant temp. meter	Section 8
• Fuel level meter —	Section 8
 Tachometer, if equipped 	
 Abnormal air being inhaled from air intake system 	
 Exhaust system – – – – leakage of exhaust gas, noise 	
 Other parts that can be checked visually 	

ENGINE BASIC INSPECTION

This check is very important for troubleshooting when ECM (PCM) has detected no DTC and no abnormality has been found in visual inspection.

Follow the flow table carefully.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Check battery voltage. Is it 11 V or more?	Go to Step 3.	Charge or replace battery.
3	Is engine cranked?	Go to Step 4.	Go to "DIAGNOSIS" in Section 6G.
4	Does engine start?	Go to Step 5.	Go to Step 7.
5	 Check idle speed as follows. 1) Warm up engine to normal operating temp. 2) Shift transmission to neutral position for M/T ("P" position for A/T). 3) All of electrical loads are switched off. 4) Check engine idle speed with scan tool. See Fig. 1. Is it 800 – 900 r/min.? 	Go to Step 6.	Go to "ENGINE DIAGNOSIS TABLE".
6	 Check ignition timing as follows. 1) Select "MISC" mode on SUZUKI scan tool and fix ignition timing to initial one. See Fig. 2. 2) Using timing light (1), check initial ignition timing. See Fig. 3. Is it 5° ± 3° BTDC at specified idle speed? 	Go to "ENGINE DIAGNOSIS TABLE".	Check ignition control related parts referring to Section 6F.
7	Check immobilizer system malfunction as follows. 1) Check immobilizer indicator lamp for flashing. Is it flashing when ignition switch is turned to ON position?	Go to "DIAGNOSIS" in Section 8A.	Go to Step 8.
8	 Check fuel supply as follows. 1) Check to make sure that enough fuel is filled in fuel tank. 2) Turn ON ignition switch for 2 seconds and then OFF. See Fig. 4. Is fuel return pressure (returning sounds) felt from fuel feed hose (1) when ignition switch is turned ON? 	Go to Step 10.	Go to Step 9.
9	Check fuel pump for operating.1) Was fuel pump operating sound heard from fuel filler for about 2 seconds after ignition switch ON and stop?	Go to "DIAG. FLOW TABLE B-3".	Go to "DIAG. FLOW TABLE B-2".
10	 Check ignition spark as follows. 1) Disconnect injector coupler. 2) Remove spark plugs and connect them to high tension cords. 3) Ground spark plugs. 4) Crank engine and check if each spark plug sparks. Is it in good condition? 	Go to Step 11.	Go to "DIAGNOSIS" in Section 6F.
11	Check fuel injector for operation as follows.1) Install spark plugs and connect injector connectors.2) Check that fuel is injected out in conical shape from fuel injector when cranking.Is it in good condition?	Go to "ENGINE DIAGNOSIS TABLE".	Go to "DIAG. FLOW TABLE B-1".

Fig. 4 for Step 8

Fig. 5 for Step 11

ENGINE DIAGNOSIS TABLE

Perform troubleshooting referring to following table when ECM (PCM) has detected no DTC and no abnormality has been found in visual inspection and engine basic inspection previously.

Condition	Possible Cause	Referring Item
Hard Starting	Ignition system out of order	
(Engine cranks OK)	 Faulty spark plug 	Spark plugs in Section 6F
	 Leaky high-tension cord 	High-tension cords in Section 6F
	 Loose connection or disconnection of high- 	High-tension cords in Section 6F
	tension cords or lead wires	
	 Faulty ignition coil 	Ignition coil in Section 6F
	Fuel system out of order	
	 Dirty or clogged fuel hose or pipe 	Diagnostic Flow Table B-3
	 Malfunctioning fuel pump 	Diagnostic Flow Table B-3
	 Air inhaling from intake manifold gasket or 	
	throttle body gasket	
	 Fuel injector resistor malfunction 	Fuel injector resistor in Section 6E1
	Engine and emission control system out of	
	order	
	 Faulty idle control system 	Diagnostic Flow Table P0505
	 Faulty ECT sensor or MAP sensor 	ECT sensor or MAP sensor in
		Section 6E1
	 Faulty ECM (PCM) 	
	Low compression	Compression check in Section 6A
	 Poor spark plug tightening or faulty gasket 	Spark plugs in Section 6F
	 Compression leak from valve seat 	Valves inspection in Section 6A
	 Sticky valve stem 	Valves inspection in Section 6A
	 Weak or damaged valve springs 	Valve springs inspection in Section 6A
	 Compression leak at cylinder head gasket 	Cylinder head inspection in
		Section 6A
	 Sticking or damaged piston ring 	Cylinders, pistons and piston rings inspection in Section 6A
	 Worn piston, ring or cylinder 	Cylinders, pistons and piston rings
	Others	
	Malfunctioning PCV valve	PCV system in Section 6E1

Condition	Possible Cause	Referring Item
Low oil pressure	 Improper oil viscosity 	Engine oil and oil filter change in
		Section 0B
	 Malfunctioning oil pressure switch 	Oil pressure switch inspection in
		Section 8
	Clogged oil strainer	Oil pan and oil pump strainer
		cleaning in Section 6A
	Functional deterioration of oil pump	Oil pump in Section 6A
	• vvorn oli pump relier valve	Oil pump in Section 6A
	• Excessive clearance in various sliding parts	
Engine noise	Valve noise	
Note: Before	Improper valve lash	Valve lash in Section 6A
checking mechanical	Worn valve stem and guide	Valves inspection in Section 6A
noise, make sure	 Weak or broken valve spring 	Valve springs inspection in
that:		Section 6A
Specified spark	Warped or bent valve	Valves inspection in Section 6A
plug in used.	Piston, ring and cylinder noise	
• Specified fuel is	• Worn piston, ring and cylinder bore	Pistons and cylinders inspection
used.		In Section 6A
	Connecting rod noise	
	• Worn rod bearing	Crank pin and connecting rod
		bearing inspection in Section 6A
	• Worn crank pin	Crank pin and connecting rod
		bearing inspection in Section 6A
	 Loose connecting rod nuts 	Connecting rod installation in
		Section 6A
	Low oil pressure	Previously outlined
		Description of the set
	• Low oil pressure	Previously outlined
	• worn bearing	Grankshaft and bearing
		Inspection in Section 6A
		crankshall and bearing
	• Loope bearing can belts	Cronkehoft inspection bA
	Loose bearing cap bolts	
	• Evenesive erenkeheft thrust play	Cronkohoft thrust play increation
	Excessive cranksnart thrust play	in Section 64
		In Section 6A

Condition	Possible Cause	Referring Item
Overheating	 Inoperative thermostat 	Thermostat in Section 6B
	 Poor water pump performance 	Water pump in Section 6B
	 Clogged or leaky radiator 	Radiator in Section 6B
	 Improper engine oil grade 	Engine oil and oil filter change in
		Section 0B
	 Clogged oil filter or oil strainer 	Oil pressure check in Section 6A
	 Poor oil pump performance 	Oil pressure check in Section 6A
	 Faulty radiator fan control system 	Radiator fan control system in
		Section 6E1
	Dragging brakes	Trouble diagnosis in Section 5
	Slipping clutch	Trouble diagnosis in Section 7C
	Blown cylinder head gasket	Cylinder head in Section 6A
Poor gasoline	Ignition system out of order	
mileage	 Leaks or loose connection of high-tension cord 	High-tension cords in Section 6F
	• Faulty spark plug (improper gap, heavy deposits	Spark plugs in Section 6F
	and burned electrodes, etc.)	
	Engine and emission control system out of	
	order	Defer to item "Improper engine
	• Figh late speed	idle speed" proviously outlined
	Poor performance of TP sensor, ECT sensor or	TP sensor ECT sensor or MAP
	MAP sensor	sensor in Section 6F1
	Faulty fuel injector	Diagnostic Flow Table B-1
	Faulty fuel injector resistor	Fuel injector resistor in Section 6F1
	• Faulty ECM (PCM)	
	Low compression	Previously outlined
	Others	
	 Poor valve seating 	Valves inspection in Section 6A
	 Dragging brakes 	Trouble diagnosis in Section 5
	 Slipping clutch 	Trouble diagnosis in Section 7C
	 Thermostat out of order 	Thermostat in Section 6B
	 Improper tire pressure 	Refer to Section 3F
Excessive engine	Oil leakage	
oil consumption	 Blown cylinder head gasket 	Cylinder head in Section 6A
	 Leaky camshaft oil seals 	Camshaft in Section 6A
	Oil entering combustion chamber	
	Sticky piston ring	Piston cleaning in Section 6A
	• Worn piston and cylinder	Pistons and cylinders inspection
		In Section 6A
	 vvorn piston ring groove and ring Improper leastice of pieton ring 	Pistons inspection in Section 6A
	 Improper location of piston ring gap Were at demograd value stars apply 	Pistons assembly in Section 6A
	• worn or damaged valve stern sear	valves removal and installation in Section 64
	• Worn valve stem	Valves inspection in Section 64
		valves inspection in Section of

Condition	Possible Cause	Referring Item
Engine hesitates	Ignition system out of order	
(Momentary lack of	 Spark plug faulty or plug gap out of adjustment 	Spark plugs in Section 6F
response as	 Leaky high-tension cord 	High-tension cords in Section 6F
accelerator is	Fuel system out of order	
depressed.	 Fuel pressure out of specification 	Diagnostic Flow Table B-3
Can occur at all	Engine and emission control system out of	Trouble diagnosis in Section 6
vehicle speeds.	order	
Usually most severe	 Poor performance of TP sensor, ECT sensor or 	TP sensor, ECT sensor or MAP
when first trying to	MAP sensor	sensor in Section 6E1
make vehicle move,	 Faulty fuel injector 	Diagnostic Flow Table B-1
as from a stop sign.)	 Faulty ECM (PCM) 	
	Engine overheating	Refer to "Overheating" section
	Low compression	Previously outlined
Surge	Ignition system out of order	
(Engine power	 Leaky or loosely connected high-tension cord 	High-tension cords in Section 6F
variation under	 Faulty spark plug (excess carbon deposits, 	Spark plugs in Section 6F
steady throttle or	improper gap, and burned electrodes, etc.)	
cruise.	Fuel system out of order	
Feels like vehicle	 Variable fuel pressure 	Diagnostic Flow Table B-3
speeds up and down	 Kinky or damaged fuel hose and lines 	
with no change in	 Faulty fuel pump (clogged fuel filter) 	
accelerator pedal.)	Engine and emission control system out of	
	order	
	 Poor performance of MAP sensor 	MAP sensor in Section 6E1
	 Faulty fuel injector 	Diagnostic Flow Table B-1
	 Faulty ECM (PCM) 	
Excessive	Engine overheating	Refer to "Overheating" section
detonation	Ignition system out of order	
(Engine makes	 Faulty spark plug 	Spark plugs in Section 6F
continuously	 Loose connection of high-tension cord 	High-tension cords in Section 6F
sharp metallic	Fuel system out of order	
knocks that change	 Clogged fuel filter (faulty fuel pump) or fuel lines 	Diagnostic Flow Table B-1 or B-2
with throttle opening.	 Air inhaling from intake manifold or throttle body 	
Sounds like pop corn	gasket	
popping.)	Engine and emission control system out of	Trouble diagnosis in Section 6
	order	
	 Poor performance of ECT sensor or MAP sensor 	ECT sensor or MAP sensor in
		Section 6E1
	 Faulty fuel injector 	Diagnostic Flow Table B-1
	 Faulty ECM (PCM) 	
	 Excessive combustion chamber deposits 	Piston and cylinder head cleaning
		in Section 6A

Condition	Possible Cause	Referring Item
Engine has no	Ignition system out of order	
power	 Faulty spark plug 	Spark plugs in Section 6F
	 Faulty ignition coil with ignitor 	Ignition coil in Section 6F
	 Leaks, loose connection or disconnection of 	High-tension cords in Section 6F
	high-tension cord	
	Engine overheating	Refer to "Overheating" section
	Fuel system out of order	
	 Clogged fuel hose or pipe 	Diagnostic Flow Table B-3 in Section 6
	 Malfunctioning fuel pump 	Diagnostic Flow Table B-2
	 Air inhaling from intake manifold gasket or 	5
	throttle body gasket	
	Engine and emission control system out of	
	order	
	 Maladjusted accelerator cable play 	Accelerator cable play in Section 6E1
	 Poor performance of TP sensor, ECT sensor or 	TP sensor, ECT sensor or MAP
	MAP sensor	sensor in Section 6E1
	 Faulty fuel injector 	Diagnostic Flow Table B-1
	● Faulty ECM (PCM)	
	Low compression	Previously outlined
	Others	
	 Dragging brakes 	Trouble diagnosis in Section 5
	Slipping clutch	Trouble diagnosis in Section 7C

Condition	Possible Cause	Referring Item
Improper engine	Ignition system out of order	
idling or engine	 Faulty spark plug 	Spark plugs in Section 6F
fails to idle	 Leaky or disconnected high-tension cord 	High-tension cords in Section 6F
	 Faulty ignition coil with ignitor 	Ignition coil in Section 6F
	Fuel system out of order	
	 Fuel pressure out of specification 	Diagnostic Flow Table B-3 in Section 6
	 Leaky manifold, throttle body, or cylinder head gasket 	
	Engine and emission control system out of	
	order	
	 Faulty Idle control system Faulty average from a sector average system 	Diagnostic Flow Table P0505
	 Faulty evaporative emission control system 	EVAP control system in Section 6E
	 Faulty fuel injector 	Diagnostic Flow Table B-1
	 Faulty fuel injector resistor 	Fuel injector resistor in Section 6E1
	 Poor performance of ECT sensor, TP sensor or 	ECT sensor, TP sensor or MAP
	MAP sensor	sensor in Section 6E1
	 Faulty ECM (PCM) 	
	Engine overheating	Refer to "Overheating" section
	Low compression	Previously outlined
	Others	
	 Loose connection or disconnection of vacuum 	
	hoses	
	 Malfunctioning PCV valve 	PCV system in Section 6E1

Condition	Possible Cause	Referring Item
Excessive	Ignition system out of order	
hydrocarbon (HC)	 Faulty spark plug 	Spark plugs in Section 6F
emission or carbon	 Leaky or disconnected high-tension cord 	High-tension cords in Section 6F
monoxide (CO)	 Faulty ignition coil with ignitor 	Ignition coil assembly in Section
		6F
	Low compression	Refer to "Low compression"
		section
	Engine and emission control system out of	
	order	
	 Lead contamination of three way catalytic 	Check for absence of filler neck
	converter	restrictor
	 Faulty evaporative emission control system 	EVAP control system in Section 6E1
	 Fuel pressure out of specification 	Diagnostic Flow Table B-3
	 Closed loop system (A/F feed back 	
	compensation) fails	
	 Faulty TP sensor 	TP sensor in Section 6E1
	 Poor performance of ECT sensor or MAP 	ECT sensor or MAP sensor in
	sensor	Section 6E1
	 Faulty injector 	Diagnostic Flow Table B-1
	 Faulty fuel injector resistor 	Fuel injector resistor in Section 6E1
	 Faulty ECM (PCM) 	
	Others	
	 Engine not at normal operating temperature 	
	 Clogged air cleaner 	
	Vacuum leaks	
Excessive nitrogen	Ignition system out of order	
oxides (NOx)	Improper ignition timing	See section 6F1
emission	Engine and emission control system out of	
	order	
	 Lead contamination of catalytic converter 	Check for absence of filler neck
		restrictor.
	• Fuel pressure out of specification	Diagnostic Flow Table B-3
	Closed loop system (A/F feed back	
	compensation) tails	
	Paulity IP sensor	ECT appear or MAD appear in
	- Poor performance of ECT sensor or MAP	Section 6E1
	Serisor Equity injector	Diagnostia Elow Table P 1
	Faulty Injector resistor	Euclipicator resistor in Section 651

SCAN TOOL DATA

As the data values given below are standard values estimated on the basis of values obtained from the normally operating vehicles by using a scan tool, use them as reference values. Even when the vehicle is in good condition, there may be cases where the checked value does not fall within each specified data range. Therefore, judgment as abnormal should not be made by checking with these data alone.

Also, conditions in the below table that can be checked by the scan tool are those detected by ECM (PCM) and output from ECM (PCM) as commands and there may be cases where the engine or actuator is not operating (in the condition) as indicated by the scan tool. Be sure to use the timing light to check the ignition timing.

NOTE:

- With the generic scan tool, only star (\ddagger) marked data in the table below can be read.
- When checking the data with the engine running at idle or racing, be sure to shift M/T gear to the neutral gear position and A/T gear to the "Park" position and pull the parking brake fully. Also, if nothing or "no load" is indicated, turn OFF A/C, all electric loads, P/S and all the other necessary switches.

	SCAN TOOL DATA	VEHICLE CONDITION		NORMAL CONDITION/ REFERENCE VALUES
☆	FUEL SYSTEM B1 (FUEL SYSTEM STATUS)	At specified idle spe	CLOSED (closed loop)	
☆	CALC LOAD (CALCULATED LOAD	At specified idle spec warming up	ed with no load after	3 – 5%
	VALUE)	At 2500 r/min with n	o load after warming up	10 – 18%
☆	COOLANT TEMP. (ENGINE COOLANT TEMP.)	At specified idle spe	85 – 95°C, 185 – 203°F	
☆	SHORT FT BI (SHORT TERM FUEL TRIM)	At specified idle spe	ed after warming up	-20 - +20%
☆	LONG FT BI (LONG TERM FUEL TRIM)	At specified idle spe	ed after warming up	-15 - +15%
☆	MAP (INTAKE MANIFOLD ABSOLUTE PRESSURE)	At specified idle speed with no load after warming up		29 – 48 kPa, 220 – 360 mmHg
☆	ENGINE SPEED	At idling with no load after warming up		Desired idle speed ± 50 r/min
☆	VEHICLE SPEED	At stop		0 km/h, 0 MPH
☆	IGNITION ADVANCE (IGNITION TIMING ADVANCE FOR NO.1 CYLINDER)	At specified idle speed with no load after warming up		–1 – 18° BTDC
☆	INTAKE AIR TEMP.	At specified idle speed after warming up		+35°C (+63°F) Ambient temp5°C (-9°F)
☆	MAF (MASS AIR FLOW	At specified idle speed with no load after warming up		1.0 - 3.0 gm/sec
	RAIE)	At 2500 r/min with n	o load after warming up	3.0 - 6.0 gm/sec
*	THROTTLE POS	Ignition switch ON/	Throttle valve fully closed	7 – 18%
	THROTTLE POSITION)	engine stopped	Throttle valve fully open	70 – 90%
☆	O2S B1 S1 (HEATED OXYGEN SENSOR-1)	At specified idle speed after warming up		0.05 – 0.95 V
☆	O2S B1 S2 (HEATED OXYGEN SENSOR-2)	When engine is running at 2000 r/min. for 3 min. or longer after warming up.		0 – 0.95 V
☆	O2S FT B1 S1	At specified idle speed after warning up		-20-+20%
☆	DIS. WITH MIL ON			

SCAN TOOL DATA	CONDITION		NORMAL CONDITION/ REFERENCE VALUES		
DESIRED IDLE (DESIRED IDLE SPEED)	At idling with no load after warming up, M/T at neutral, A/T at "P" range		850 r/min		
TP SENSOR VOLT (THROTTLE POSITION	Ignition switch	Throttle valve fully closed	More than 0.2 V		
SENSOR OUTPUT VOLTAGE)	stopped	Throttle valve fully open	Less than 4.8 V		
INJ PULSE WIDTH (FUEL INJECTION	At specified idle speed with no load after warming up		0.8 – 2.3 msec.		
PULSE WIDTH)	At 2500 r/min with	n no load after warming up	0.8 – 2.3 msec.		
IAC FLOW DUTY (IDLE AIR CONTROL FLOW DUTY)	At idling with no load after warming up		20 – 40%		
TOTAL FUEL TRIM	At specified idle s	peed after warming up	-35 - +35%		
BATTERY VOLTAGE	Ignition switch ON	l/engine stop	10 – 14 V		
CANIST PRG DUTY (EVAP CANISTER PURGE FLOW DUTY)	At specified idle speed after warming up		0 – 100%		
CLOSED THROT POS	Throttle valve at ic	le position	ON		
(CLOSED THROTTLE POSITION)	Throttle valve opens larger than idle position		OFF		
	When engine is at fuel cut condition		When engine is at fuel cut condition ON		ON
FUELCUI	Other than fuel cu	t condition	OFF		
RAD FAN (RADIATOR FAN	Ignition switch	Engine coolant temp.: Lower than 92.5°C (199°F)	OFF		
CONTROL RELAY)	UN	Engine coolant temp.: 97.5°C (208°F) or higher	ON		
	Ignition switch ON/Headlight, small light, heater fan and rear window defogger all turned OFF		OFF		
Ignition switch ON/Headlight, small light, heater fan or rear window defogger turned ON		l/Headlight, small light, window defogger turned	ON		
	Engine running after warming up, A/C not operating		OFF		
A/C SWITCH	Engine running after warming up, A/C operating		ON		
PSP SWITCH	Engine running at idle speed and steering wheel at straight-ahead position.		OFF		
(if equipped).	Engine running at idle speed and steering wheel turned to the right or left as far as it stops.		ON *		
FUEL TANK LEVEL			0 - 100%		
BAROMETRIC PRESS	_		Display the barometric pressure		
FUEL PUMP	Within 3 seconds after ignition switch ON or engine running		ON		
-	Engine stop at ignition switch ON.		OFF		

SCAN TOOL DATA	CONDITION	NORMAL CONDITION/ REFERENCE VALUES	
VSS (for 4-A/T) (Vehicle Speed Sensor)	At stop.	0 km/h 0 MPH	
SHIFT SOL1 CON (Command Signal) MON (Monitor Signal)	Ignition switch ON, selector lever is shifted at P, R or N range	OFF	
SHIFT SOL2 CON (Command Signal) MON (Monitor Signal)	Ignition switch ON, selector lever is shifted at D range and vehicle stops	ON	
THROT POS LEVEL (THROTTLE POSITION LEVER FOR A/T)"0" (about idle position), "1", "2", "3", "4", "5", "6" or according to throttle valve opening.		r "7" (about full open) appears	
TRANS. RANGE (TRANSMISSION RANGE SENSOR)	"P", "R", "N", "D", "2" or "L" appears according tho selector lever position.		
	Select lever at D, 2 or L range	1	
GLARFOSHION	Select lever at P, N or R range	—	

SCAN TOOL DATA DEFINITIONS FUEL SYSTEM (FUEL SYSTEM STATUS)

Air/fuel ratio feedback loop status displayed as either open or closed loop. Open indicates that ECM (PCM) ignores feedback from the exhaust oxygen sensor. Closed indicates final injection duration is corrected for oxygen sensor feedback.

CALC LOAD (CALCULATED LOAD VALUE, %)

Engine load displayed as a percentage of maximum possible load. Value is calculated mathematically using the formula: actual (current) intake air volume \div maximum possible intake air volume x 100%.

COOLANT TEMP.

(ENGINE COOLANT TEMPERATURE, °C, °F)

It is detected by engine coolant temp. sensor

SHORT FT B1 (SHORT TERM FUEL TRIM, %)

Short term fuel trim value represents short term corrections to the air/fuel mixture computation. A value of 0 indicates no correction, a value greater than 0 means an enrichment correction, and a value less than 0 implies an enleanment correction.

LONG FT B1 (LONG TERM FUEL TRIM, %)

Long term fuel trim Value represents long term corrections to the air/fuel mixture computation. A value of 0 indicates no correction, a value greater than 0 means an enrichment correction, and a value less than 0 implies an enleanment correction.

MAP (INTAKE MANIFOLD ABSOLUTE PRESSURE, kPa, inHg)

It is detected by manifold absolute pressure sensor and used (among other things) to compute engine load.

ENGINE SPEED (rpm)

It is computed by reference pulses from crankshaft position sensor.

VEHICLE SPEED (km/h, MPH)

It is computed based on pulse signals from vehicle speed sensor.

IGNITION ADVANCE (IGNITION TIMING ADVANCE FOR NO.1 CYLINDER, °)

Ignition timing of NO.1 cylinder is commanded by ECM (PCM). The actual ignition timing should be checked by using the timing light.

INTAKE AIR TEMP. (°C, °F)

It is detected by intake air temp. sensor and used to determine the amount of air passing into the intake manifold as air density varies with temperature.

MAF (MASS AIR FLOW RATE, gm/s, lb/min)

It represents total mass of air entering intake manifold which is computed based on signals from MAP sensor, IAT sensor, TP sensor, etc.

THROTTLE POS (ABSOLUTE THROTTLE POSITION, %)

When throttle position sensor is fully closed position, throttle opening is indicated as 0% and 100% full open position.

OXYGEN SENSOR B1 S1 (HEATED OXYGEN SENSOR-1, V)

It indicates output voltage of HO2S-1 installed on exhaust manifold (pre-catalyst).

OXYGEN SENSOR B1 S2 (HEATED OXYGEN SENSOR-2, V)

It indicates output voltage of HO2S-2 installed on exhaust pipe (post-catalyst). It is used to detect catalyst deterioration.

DESIRED IDLE (DESIRED IDLE SPEED, rpm)

The Desired Idle Speed is an ECM (PCM) internal parameter which indicates the ECM (PCM) requested idle. If the engine is not running, this number is not valid.

TP SENSOR VOLT (THROTTLE POSITION SENSOR OUTPUT VOLTAGE, V)

The Throttle Position Sensor reading provides throttle valve opening information in the form of voltage.

INJ PULSE WIDTH (FUEL INJECTION PULSE WIDTH, msec.)

This parameter indicates time of the injector drive (valve opening) pulse which is output from ECM (PCM) (but injector drive time of NO.1 cylinder for multiport fuel injection).

IAC FLOW DUTY (IDLE AIR (SPEED) CONTROL DUTY, %)

This parameter indicates opening of the throttle valve in terms of percentage to opening controllable by the ISC actuator.

TOTAL FUEL TRIM (%)

The value of Total Fuel Trim is obtained by putting values of short Term Fuel Trim and Long Term Fuel Trim together. This value indicates how much correction is necessary to keep the air/fuel mixture stoichiometrical.

BATTERY VOLTAGE (V)

This parameter indicates battery positive voltage inputted from main relay to ECM (PCM).

CANIST PURGE DUTY (EVAP CANISTER PURGE FLOW DUTY, %)

This parameter indicates valve ON (valve open) time rate within a certain set cycle of EVAP purge solenoid valve which controls the amount of EVAP purge. 0% means that the purge valve is completely closed while 100% is a fully open valve.

CLOSED THROTTLE POSITION (ON/OFF)

This parameter will read ON when throttle valve is fully closed, or OFF when the throttle is not fully closed.

FUEL CUT (ON/OFF)

- ON : Fuel being cut (output signal to injector is stopped)
- OFF : Fuel not being cut

RAD FAN

(RADIATOR FAN CONTROL RELAY, ON/OFF)

- ON : Command for radiator fan control relay operation being output.
- OFF : Command for relay operation not being output.

ELECTRIC LOAD (ON/OFF)

- ON : Headlight, small light, heater fan or rear window defogger ON signal inputted.
- OFF : Above electric loads all turned OFF.

A/C SWITCH (ON/OFF)

- ON : Command for A/C operation being output from ECM (PCM) to A/C amplifier.
- OFF : Command for A/C operation not being output.

FUEL TANK LEVEL (%)

This parameter indicates approximate fuel level in the fuel tank. As the detectable range of the fuel level sensor is set as 0 to 100%, however, with some models whose fuel tank capacity is smaller, the indicated fuel level may be only 70% even when the fuel tank is full.

PSP SWITCH (ON/OFF)

- ON : PSP switch detects P/S operation (high PS pressure).
- OFF : PSP switch not detects P/S operation.

BAROMETRIC PRESS (kPa, inHg)

This parameter represents a measurement of barometric air pressure and is used for altitude correction of the fuel injection quantity and ISC actuator control.

FUEL PUMP (ON/OFF)

ON is displayed when the ECM (or PCM) activates the fuel pump via the fuel pump relay switch.

VSS (A/T) (km/h, MPH)

If is computed by using pulse signals from vehicle (output) speed sensor on automatic transmission.

TRANS RANGE (TRANSMISSION RANGE SENSOR, P, R, N, D, 2 OR L)

It is indicated transmission range detected by transmission range sensor.

SHIFT SOL 1-CON (SHIFT SOLENOID-1, ON/OFF)

ON : ON command being output to shift solenoid-1 OFF : ON command not being output.

SHIFT SOL 2-CON (SHIFT SOLENOID-2, ON/OFF)

ON : ON command being output to shift solenoid-2

OFF : ON command not being output.

SHIFT SOL 1-MON (SHIFT SOLENOID-1, ON/OFF)

The monitor result of the shift solenoid-1 circuit is displayed.

- ON : Electricity being passed to shift solenoid-1 or circuit open.
- OFF : Electricity not being passed or circuit short.

SHIFT SOL 2-MON (SHIFT SOLENOID-2, ON/OFF)

The monitor result of the shift solenoid-2 circuit is displayed.

- ON : Electricity being passed to shift solenoid-2 or circuit open.
- OFF : Electricity not being passed or circuit short.

THROT POS LEVEL (THROTTLE POSITION LEVEL FOR A/T, "0", "1", "2", "3", "4", "5", "6" or "7")

This parameter indicates which level (zone) the throttle valve opening is in. The throttle opening is divided into 8 levels (zones) from "0" (about idle position) to "7" (about full open) and signals are assigned to each opening level (zone). ECM (PCM) control the automatic gear change of the automatic transmission by using these signals according to the signal from the TP sensor.

GEAR POSITION

This parameter indicates the A/T gear position which is computed on signals from the Transmission Range Switch, VSS, TP Sensor, and so forth.

INSPECTION OF ECM (PCM) AND ITS CIRCUITS

ECM (PCM) and its circuits can be checked at ECM (PCM) wiring couplers by measuring voltage and resistance.

CAUTION:

ECM (PCM) cannot be checked by itself. It is strictly prohibited to connect voltmeter or ohmmeter to ECM (PCM) with coupler disconnected from it.

Voltage Check

- 1) Remove ECM (PCM) (1) from body referring to Section 6E.
- 2) Check voltage at each terminal of couplers (2) connected.

NOTE:

As each terminal voltage is affected by the battery voltage, confirm that it is 11 V or more when ignition switch is ON.

	TER- MINAL	WIRE COLOR	CIRCUIT	STANDARD VOLTAGE	CONDITION
	1	В	ECM (PCM) ground	—	-
	2	W/BI	Power source	10 – 14 V	Ignition switch ON
	3	—	Blank	—	—
	4	—	Blank	—	
	5	—	Blank	—	—
	6	—	Blank	—	—
	7	R/G	EVAP canister purge valve	10 – 14 V	Ignition switch ON
	8	G/Or	Shift solenoid-B (A/T)	0 V	Ignition switch ON, selector lever at "P" range
				10 – 14 V	Ignition switch ON, selector lever at "D" range
	9	C /W	Shift solenoid-A (A/T)	0 V	Ignition switch ON, selector lever at "P" range
		G/W		10 – 14 V	Ignition switch ON, selector lever at "D" range
	10	Or	Igniter (IGT)	—	—
02"	11	Gr/Y	ISC actuator	—	—
Q	12	Y/B	Fuel injector	10 – 14 V	Ignition switch ON
0R	13	B/BI	Ground for injector		_
	14	W	Power source for back-up	10 – 14 V	Ignition switch ON and OFF
N Z	15	W/BI	Power source	10 – 14 V	Ignition switch ON
0	16	Gr/B	ISC actuator relay	0.3 – 1.0 V	Ignition switch ON
	17 \		Malfunction indicator lamp	0.2 – 2.0 V	Ignition switch ON
		V / 1		10 – 14 V	When engine running
	18	V/G	Immobilizer indicator lamp	0.2 – 2.0 V	Ignition switch ON
				10 – 14 V	When engine running at idle
	19	Lg/B	Heater of H02S-2	10 – 14 V	Ignition switch ON
	20	BI	Radiator fan control relay	10 – 14 V	Ignition switch ON, Engine coolant temp: Below 91.5°C (197°F)
				0.3 – 1.0 V	Ignition switch ON, Engine coolant temp: 96.0°C (205°F) or higher
	21			0.3 – 1.3 V	For 2 seconds after ignition switch ON
		P/ W	ruei pump relay	10 – 14 V	After the above time
	22	BI/B	Main relay	0.4 – 1.5 V	Ignition switch ON
	23	_	Blank	—	
	24	Gr/R	ISC actuator		
	25	Y/R	EFE heater relay	10 – 14 V	Ignition switch ON
	26	B/R	Ground for injector		

	TER- MINAL	WIRE COLOR	CIRCUIT	STANDARD VOLTAGE	CONDITION		
CTOR "C01"	1	Lg	Power source for sensor	4.75 – 5.25 V	Ignition switch ON		
	2	Or	Camshaft position sensor (+)	—			
	3	W/B	Crankshaft position sensor (+)	_	_		
	4	Gr/G	Closed throttle position switch (In ISC actuator)	0 – 1 V	Ignition switch ON, ISC actuator plunger is in contact with throttle lever screw		
				4 – 6 V	Ignition switch ON Plunger is apart from throttle lever screw		
	5	Lg/R	Manifold absolute pressure sensor	3.3 – 4.0 V	Ignition switch ON Barometric pressure: 100 kPa, 760 mmHg		
	6	Lg/W	Throttle position sensor	0.2 – 1.0 V	Ignition switch ON, when clearance between throttle lever and throttle stop screw is less than 0.35 mm (0.014 in.)		
				2.8 – 4.8 V	Ignition switch ON Throttle valve at full open position		
	7	Gr/W	Engine coolant temp. sensor	0.55 – 0.95 V	Ignition switch ON Engine coolant temp.: 80°C (176°F)		
IN E	8	P/B	Heater of H02S-1	10 – 14 V	Ignition switch ON		
Ő	9	G	Ground for sensors	—	_		
0	10	W	Camshaft position sensor (-)	—	_		
	11	W/R	Crankshaft position sensor (+)	—	_		
	12	W/B	EFE heater monitor	0 – 1 V	Heater relay OFF		
				10 – 14 V	Heater relay ON		
	13	R	Heated oxygen sensor-1		Refer to DTC flow chart		
	14	Gr	Intake air temp. sensor	2.0 – 2.7 V	Ignition switch ON Sensor ambient temp. (Intake air temp): 20°C (68°F)		
				10 – 14 V	Ignition switch ON		
	15	BI/W	Power steering pressure switch (If equipped)	0 – 1 V	With engine running at idle speed, turning steering wheel to the right or left as far as it stops, repeating it a few times		
	10		Engine start switch	6 – 12 V	While engine cranking		
	16	В/Ү	(Engine start signal)	0 – 1 V	Other than above		
	TER- MINAL	WIRE COLOR	С	IRCUIT	STANDARD VOLTAGE	(CONDITION
--------	---------------	-----------------------------------	---	-----------------------------	---	---	------------------------------------
	1	V/W	Data link co (SUZUKI se	nnector erial data line)	4 – 6 V	Ignition switch	ON
	2	BI	Vehicle spee	ed sensor (+) (A/T)	0.4 – 0.8 V	Ignition switch	ON
		Y/G Ve	Vehicle speed sensor (M/T)		Indicator deflection repeated 0 V and 4 – 6 V	Ignition switch Front left tire t right tire locke	ON urned slowly with front d
	3	G	Transmis-	"2" range		Ignition switch range	ON, Selector lever at "2"
	4	Or/Y	sion range sensor (switch)	"N" range	10 – 14 V	Ignition switch range	ON, Selector lever at "N"
	5	Or/B	(A/T only).	"P" range		Ignition switch range	ON, Selector lever at "P"
	6	—	Blank		_		_
	7	—	Blank		—		—
	8	R	Heated oxy	gen sensor-2	Refer to DTC	flow chart	
	9	—		_	_		_
		Y/R	Fuel level sensor (gauge)		0 – 1.5 V	Ignition switch ON, fuel tank fully filled	
	10				3 – 5.5 V	Ignition switch ON, fuel tank emptied	
5.	11		Blank				_
S "C03	12	R/G	Data link connector (OBD serial data line)		10 – 14 V	Ignition switch	ON
þ	13	Р	Vehicle speed sensor (–) (A/T)		0.4 – 0.8 V	Ignition switch	ON
INEC	14	G/BI	Transmis- sion range sensor (switch)	"L" range			Selector lever at "L" range
CO	15	G/R		"D" range	10 – 14 V	Ignition switch ON	Selector lever at "D" range
	16	R	(A/T)	"R" range			Selector lever at "R" range
	17	17 Lg/R A/C ON (output) signal fo		tput) signal for A/C	0 – 1 V	While engine running and A/C not operating	
				10 – 14 V	While engine running and A/C operation		
	18	18 Br/Y Electric load signal	Electric load	signal	0 –1 V	Ignition switch ON Headlight, small light, heater fan and rear window defogger turned OFF	
	18		a signai	10 – 14 V	Ignition switch Headlight, sm rear window d	ON all light, heater fan and efogger turned ON	
	19	BI/R	A/C (input)	signal for A/C	10 – 14 V	While engine operating	running and A/C not
			ampiner		0-0.6 V	While engine running and A/C operating	
	20	B/W	Ignition swit	ch	10 – 14 V	Ignition switch	ON
	21	—	Blank				—
	22	—	Blank		—		

RESISTANCE CHECK

1) Disconnect ECM (PCM) couplers from ECM (PCM) with ignition switch OFF.

CAUTION:

Never touch terminals of ECM (PCM) itself or connect voltmeter or ohmmeter.

2) Check resistance between each terminal of couplers disconnected.

CAUTION:

- Be sure to connect ohmmeter probe from wire harness side of coupler.
- Be sure to turn OFF ignition switch for this check.
- Resistance in table below represents that when parts temperature is 20°C (68°F).

TERMINALS	CIRCUIT	STANDARD RESISTANCE
C01-8 to C03-20	H02S-1 heater	11.7 – 14.3 Ω
C02-19 to C03-20	H02S-2 heater	11.7 – 14.3 Ω
C02-12 to C02-2/15	Fuel injector	2.4 – 3.6 Ω
C02-7 to C02-2/15	EVAP canister purge valve	30 – 34 Ω
C02-21 to C03-20	Fuel pump relay	100 – 120 Ω
C02-16 to C02-2/15	ISC actuator relay	100 – 120 Ω
C02-25 to C02-2/15	EFE heater relay	100 – 120 Ω
C02-8 to Body ground	Shift solenoid-B	8 – 20 Ω
C02-9 to Body ground	Shift solenoid-A	8 – 20 Ω
C02-20 to C02-2/15	Radiator fan control relay	100 – 120 Ω
C02-22 to C02-14	Main relay	100 – 120 Ω
C02-1 to Body ground	Ground	Continuity
C02-13 to Body ground	Ground	Continuity
C02-26 to Body ground	Ground	Continuity

COMPONENT LOCATION

INFORMATION SENSORS

- 1. MAP sensor
- 2. TP sensor
- 3. IAT sensor
- 4. ECT sensor
 5. Heated oxygen sensor-1
- 6. VSS
- 7. Ignition coil

- Battery
 CMP sensor (in Distributor)
 A/C contoller (if equipped)
- 11. CKP sensor
- 12. CTP switch (in ISC actuator)
- 13. Heated oxygen sensor-2

CONTROL DEVICES

- a: Fuel injector
- b: EVAP canister purge valve
- c: Fuel pump relay
- d: Malfunction indicator lamp
- e: ISC actuator
- f: Radiator fan control relay

- g: Igniter h: EFE heater relay i: ISC actuator relay

OTHERS

- A: ECM (PCM)
- B: Main relay C: EVAP canister
- D: Injector resistor
- E: EFE heater F: Electric load diode

TABLE A-1 MALFUNCTION INDICATOR LAMP CIRCUIT CHECK – LAMP DOES NOT COME "ON" AT IGNITION SWITCH ON (BUT ENGINE AT STOP)

CIRCUIT DESCRIPTION

When the ignition switch is turned ON, ECM (PCM) causes the main relay to turn ON (close the contact point). Then, ECM (PCM) being supplied with the main power, turns ON the malfunction indicator lamp (MIL). When the engine starts to run and no malfunction is detected in the system, MIL goes OFF but if a malfunction was or is detected, MIL remains ON even when the engine is running.

INSPECTION

STEP	ACTION	YES	NO
1	MIL Power Supply Check 1) Turn ignition switch ON. Do other indicator/warning lights in combination meter comes ON?	Go to Step 2.	"IG COIL METER" fuse blown, main fuse blown, ignition switch malfunction, "B/W" circuit between "IG COIL METER" fuse and combination meter or poor coupler connection at combination meter.
2	ECM (PCM) Power and Ground Circuit Check Does engine start?	Go to Step 3.	Go to TABLE A-3 ECM (PCM) POWER AND GROUND CIRCUIT CHECK. If engine is not cranked, go to DIAGNOSIS in SECTION 8A.
3	 MIL Circuit Check 1) Turn ignition switch OFF and disconnect connectors from ECM (PCM). 2) Check for proper connection to ECM (PCM) at terminal C02-17. 3) If OK, then using service wire, ground terminal C02-17 in connector disconnected. Does MIL turn on at ignition switch ON? 	Substitute a known- good ECM (PCM) and recheck.	Bulb burned out or "V/Y" wire circuit open.

TABLE A-2 MALFUNCTION INDICATOR LAMP CIRCUIT CHECK – LAMP REMAINS "ON" AFTER ENGINE STARTS

WIRING DIAGRAM/CIRCUIT DESCRIPTION – Refer to table A-1.

INSPECTION

STEP	ACTION	YES	NO
1	Diagnostic Trouble Code (DTC) check 1) Check DTC referring to DTC CHECK section. Is there any DTC(s)?	Go to Step 2 of ENGINE DIAG. FLOW TABLE.	Go to Step 2.
2	DTC check Start engine and recheck DTC while engine running. Is there any DTC(s)?		Go to Step 3.
3	 MIL Circuit check 1) Turn OFF ignition switch. 2) Disconnect connectors from ECM (PCM). Does MIL turn ON at ignition switch ON? 	"V/Y" wire circuit shorted to ground.	Substitute a known-good ECM (PCM) and recheck.

TABLE A-3 ECM (PCM) POWER AND GROUND CIRCUIT CHECK – MIL DOESN'T LIGHT AT IGNITION SWITCH ON AND ENGINE DOESN'T START THOUGH IT IS CRANKED UP

CIRCUIT DESCRIPTION

When the ignition switch tuned ON, the main relay turns ON (the contact point closes) and the main power is supplied to ECM (PCM).

INSPECTION

STEP	ACTION	YES	NO
1	Main Relay Operating Sound Check Is operating sound of main relay heard at ignition switch ON?	Go to Step 5.	Go to Step 2.
2	 Main Relay Check 1) Turn OFF ignition switch and remove main relay (1). 2) Check for proper connection to main relay (1) at terminal 3 and 4. 3) Check resistance between each two terminals. See Fig. 1 and 2. Between terminals 1 and 2: Infinity Between terminals 3 and 4: 100 – 120 Ω 4) Check that there is continuity between terminals 1 and 2 when battery is connected to terminals 3 and 4. See Fig. 3. Is main relay in good condition? 	Go to Step 3.	Replace main relay.
3	Fuse Check Is main "FI" fuse in good condition?	Go to Step 4.	Check for short in circuits connected to this fuse.
4	 ECM (PCM) Power Circuit Check 1) Turn OFF ignition switch, disconnect connectors from ECM (PCM) and install main relay. 2) Check for proper connection to ECM (PCM) at terminals C03-20, C02-2, C02-15 and C02-22. 3) If OK, then measure voltage between terminal C03-20 and ground, C02-22 and ground with ignition switch ON. Is each voltage 10 – 14 V? 	Go to Step 5.	"B/W", "W/R" or "BI/B" circuit open.

6x6Warld.com

STEP	ACTION	YES	NO
5	ECM (PCM) Power Circuit Check	Check ground circuits	Go to Step 6.
	1) Using service wire, ground terminal C02-22 and	"BI/B" and "W/BI" for	
	measure voltage between terminal C02-2 and	open.	
	ground at ignition switch ON.	If OK, then substitute a	
	Is it 10 – 14 V?	known-good ECM	
		(PCM) and recheck.	
6	Is operating sound of main relay heard in Step 1?	Go to Step 7.	"W/R" or "W/BI" wire
			open.
7	Main Relay Check	"W/R" or "W/BI" wire	Replace main relay.
	1) Check main relay according to procedure in	open.	
	Step 2.		
	Is main relay in good condition?		

DTC P0105 MANIFOLD ABSOLUTE PRESSURE (MAP) CIRCUIT MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE	
 MAP: 5 kPa, 37.5 mmHg or less 	 "G" circuit open 	
(Low pressure – High vacuums – Low voltage)	 "Lg" circuit open or shorted to ground 	
or	 "Lg/R" circuit open or shorted to ground 	
 MAP: 130 kPa, 975 mmHg or more 	MAP sensor malfunction	
(High pressure – Low vacuums – High voltage)	 ECM (PCM) malfunction 	

NOTE:

- When DTC P0105, and/or P0120, P0510 are indicated together, it is possible that "Lg" circuit is open.
- When DTC P0105, P0110, P0115 and/or P0120 are indicated together, it is possible that "G" circuit is open.

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and keep it at idle for 1 min.
- 2) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check MAP Sensor and Its Circuit. 1) Connect scan tool to DLC with ignition switch OFF. 2) Turn ignition switch ON. 3) Check intake manifold pressure. See Fig. 1. Is it 130 kPa or more or 5 kPa or less? 	Go to Step 3.	Intermittent trouble. Check for intermittent referring to "INTERMITTENT AND POOR CONNECTION" in Section 0A.
3	 Check Wire Harness. 1) Disconnect MAP sensor connector with ignition switch OFF. 2) Check for proper connection of MAP sensor at "Lg/R" and "G" wire terminals. 3) If OK, then with ignition switch ON, check voltage at each of "Lg" and "Lg/R" wire terminals. See Fig. 2. Is voltage about 4 – 6 V at each terminal? 	Go to Step 4.	"Lg" wire open or shorted to ground circuit or shorted to power circuit, "Lg/R" wire open or shorted to ground, poor C01-5 connection or C01-1 connection or C01-1 connection. If wire and connection are OK, confirm that MAP sensor is normal and then substitute a known-good ECM (PCM) and recheck. NOTE: When battery voltage is applied to "Lg" wire, it is possible that MAP sensor is also faulty.
4	Check MAP sensor according to "MAP Sensor Individual Check" in Section 6E1. Is it in good condition?	"Lg" wire shorted to "Lg/R" wire, "G" wire open, poor C01-9 connection. If wire and connection are OK, substitute a known- good ECM (PCM) and recheck.	Replace MAP sensor.

Fig. 1 for Step 2

Fig. 2 for Step 3

DTC P0110 INTAKE AIR TEMP. (IAT) CIRCUIT MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 Low intake air temperature (High voltage-High resistance) 	"Gr" circuit open or shorted to power
or	• "G" circuit open
 High intake air temperature (Low voltage-Low resistance) 	 IAT sensor malfunction
	 ECM (PCM) malfunction

NOTE:

• When DTC P0105, P0110, P0115 and P0120 are indicated together, it is possible that "G" circuit is open.

• Before inspecting, be sure to check that ambient temperature is higher than -40°C (-40°F).

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and keep it at idle for 1 min.
- 2) Select "DTC" mode no scan tool and check DTC.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check IAT Sensor and Its Circuit. 1) Connect scan tool to DLC with ignition switch OFF. 2) Turn ignition switch ON. 3) Check intake air temp. displayed on scan tool. See Fig. 1. Is -40°C (-40°F) or 119°C (246°F) indicated? 	Go to Step 3.	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.
3	 Check Wire Harness. 1) Disconnect IAT sensor connector with ignition switch OFF. 2) Check for proper connection to IAT sensor at "Gr" and "G" wire terminals. 3) If OK, then with ignition switch ON, is voltage applied to "Gr" wire terminal about 4 – 6 V? See Fig. 2. 	Go to Step 5.	"Gr" wire open or shorted to power, or poor C01-14 connection. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.
4	Does scan tool indicate –40°C (–40°F) at Step 2.	Go to Step 6.	Go to Step 5.
5	 Check Wire Harness. 1) Check intake air temp. displayed on scan tool with ignition switch ON. Is -40°C (-40°F) indicated? 	Replace IAT sensor.	"Gr" wire shorted to ground. If wire is OK, substitute a known-good ECM (PCM) and recheck.
6	 Check Wire Harness. 1) Using service wire, connect IAT sensor connector terminals. 2) Check intake air temp. displayed on scan tool with ignition switch ON. See Fig. 3. Is 119°C (246°F) indicated? 	Replace IAT sensor.	"Gr" wire open or poor C01-9 connection. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.

Fig. 1 for Step 2

Fig. 2 for Step 3

Fig. 3 for Step 4

DTC P0115 ENGINE COOLANT TEMPERATURE (ECT) CIRCUIT MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
• Low engine coolant temperature (High voltage-High resistance)	• "Gr/W" circuit open or shorted to power
or	 "G" circuit open
• High engine coolant temperature (Low voltage-Low resistance)	 ECT sensor malfunction
	 ECM (PCM) malfunction

NOTE:

Before inspecting, be sure to check that coolant temp. meter in combination meter indicates normal operating temperature (Engine is not overheating).

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and keep it at idle for 1 min.
- 2) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check ECT Sensor and Its Circuit. 1) Connect scan tool with ignition switch OFF. 2) Turn ignition switch ON. 3) Check engine coolant temp. displayed on scan tool. See Fig. 1. Is -40°C (-40°F) or 119°C (246°F) indicated? 	Go to Step 3.	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0 A.
3	 Check Wire Harness. 1) Disconnect ECT sensor connector. 2) Check engine coolant temp. displayed on scan tool. Is -40°C (-40°F) indicated? 	Replace ECT sensor.	"Gr/W" wire shorted to ground. If wire is OK, substitute a known-good ECM (PCM) and recheck.
4	Does scan tool indicate –40 $^\circ\text{C}$ (–40 $^\circ\text{F})$ at Step 2.	Go to Step 6.	Go to Step 5.
5	 Check Wire Harness. 1) Disconnect ECT sensor connector with ignition switch OFF. 2) Check for proper connection to ECT sensor at "G" and "Gr/W" wire terminals. 3) If OK, then with ignition switch ON, is voltage applied to "G" wire terminal about 4 – 6 V? See Fig. 2. 	Go to Step 4.	"Gr/W" wire open or shorted to power, or poor C01-7 connection. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.
6	 Check Wire Harness. 1) Using service wire, connect ECT sensor connector terminals. See Fig. 3. 2) Turn ignition switch ON and check engine coolant temp. displayed on scan tool. Is 119°C (246°F) indicated? 	Replace ECT sensor.	"G" wire open or poor C01-9 connection. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.

Fig. 1 for Step 2

DLC

Scan tool

Fig. 2 for Step 3

Fig. 3 for Step 4

DTC P0120 THROTTLE POSITION CIRCUIT MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
Signal voltage high	• "G" circuit open
or	 "Lg/W" circuit open or shorted to ground
 Signal voltage low 	 "Lg" circuit open or shorted to power or ground
	 TP sensor malfunction
	 ECM (PCM) malfunction

NOTE:

• When DTC P0105, P0110, P0115 and/or P0120 are indicated together, it is possible that "G" circuit is open.

• When DTC P0105, P0120 and/or P0510 are indicated together it is possible that "Lg" circuit is open.

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and keep it at idle for 1 min.
- 2) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check TP Sensor and Its Circuit. 1) Connect scan tool to DLC with ignition switch OFF and then turn ignition switch ON. 2) Check throttle valve opening percentage displayed on scan tool. See Fig. 1. Is it displayed 2% or less? 3) Check throttle valve opening percentage displayed on scan tool while opening throttle valve from idle position to full open position. See Fig. 1. Is it displayed 96% or higher? 	Go to Step 3.	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0 A.
3	 Check Wire Harness. 1) Disconnect connector from TP sensor with ignition switch OFF. 2) Check for proper connection to TP sensor at "Lg", "Lg/W" and "G" wire terminal. 3) If OK, then with ignition switch ON, check voltage at each of "Lg" and "Lg/W" wire terminals. See Fig. 2. Is voltage about 4 – 6 V at each terminal? 	Go to Step 4.	"Lg" wire open, "Lg" wire shorted to ground circuit or power circuit or "G" wire, "Lg/W" wire open or shorted to ground circuit or poor C01-1 or C01-6 connection. If wire and connection are OK, substitute a known- good ECM (PCM) and recheck.
4	 Check TP Sensor. 1) Check resistance between terminals of TP sensor. See Fig. 3. Between 1 and 4: 2.87 – 5.33 kΩ Between 1 and 3: 100 Ω – 20 kΩ, varying according to throttle valve opening. Are measured values within specifications? 	"G" wire open or poor C01–9 connection. If wire and connection are OK, substitute a known- good ECM (PCM) and recheck.	Replace TP sensor.

Fig. 1 for Step 2

Fig. 3 for Step 4

DTC P0121 THROTTLE POSITION CIRCUIT RANGE/PERFORMANCE PROBLEM

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 After engine warmed up. 	 TP sensor malfunction
 While vehicle running at specified engine speed. 	 High resistance in the circuit
 No change in intake manifold pressure (constant throttle opening) 	 ECM (PCM) malfunction
• Difference between actual throttle opening (detected from TP sensor)	
and opening calculated by ECM (PCM) (Obtained on the basis of	
engine speed and intake manifold pressure) in larger than specified	
value.	
st 2 driving cycle detection logic, continuous monitoring	

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester, on a level road.
- Turn ignition switch OFF. Clear DTC with ignition switch ON, check vehicle and environmental condition for:

 Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
 - Ambient temp.: -10°C, 14°F or higher
 - Intake air temp.: 70°C, 158°F or lower
 - Engine coolant temp.: 70 110°C, 158 230°F
- 2) Warm up engine to normal operating temperature.
- 3) Increase vehicle speed to 30 40 mph, 50 60 km/h in 3rd gear or "D" range and hold throttle valve at that opening position for 1 min.
- 4) Stop vehicle.
- 5) Check DTC in "DTC" mode and pending DTC in "ON BOARD TEST" or "PENDING DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check TP Sensor and Its Circuit. 1) Turn ignition switch OFF and connect SUZUKI scan tool to DLC. 2) Turn ignition switch ON and check TP sensor output voltage when throttle valve is at idle position and fully opened. See Fig. 1 and 2. Dose voltage vary within specified value linearly as shown in figure? 	If voltmeter was used, check terminal C01-6 for poor connection. If OK, substitute a known-good ECM (PCM) and recheck.	Go to Step 3.
3	 Check TP Sensor. 1) Turn ignition switch OFF. 2) Disconnect TP sensor connector. 3) Check for proper connection to TP sensor at each terminal. 4) If OK, then measure resistance between terminals and check if each measured value is as specified below. See Fig. 3. Between 1 and 4: 2.87 – 5.33 kΩ Between 1 and 3: 100 Ω – 20 kΩ, varying according to throttle valve opening. Are measured values as specified? 	High resistance in "Lg", "Lg/W" or "G" circuit. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.	Replace TP sensor.

Fig. 1 for Step 2

Fig. 3 for Step 3

Condition "A" Clearance between throttle lever and throttle stop screw is less than 0.35 mm (0.014 in.).

DTC P0130 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION (SENSOR-1)

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 When running at idle speed after engine warmed up and running at specified vehicle speed, HO2S-1 output voltage does not go below 0.3 V or over 0.6 V. 2 driving cycle detection logic, Monitoring once/1 	 Heated oxygen sensor-1 malfunction "G" or "R" circuit open (poor connection) or short
driving.	

DTC CONFIRMATION PROCEDURE

WARNING:

• When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.

• Road test should be carried out with 2 persons, a driver and a tester.

1) Turn ignition switch OFF. Clear DTC with ignition switch ON, check vehicle and environmental condition for: – Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)

- Ambient temp.: –10°C, 14°F or higher
- Intake air temp.: 70°C, 158°F or lower
- 2) Warm up engine to normal operating temperature.
- 3) Drive vehicle at 30 40 mph, 50 60 km/h for 2 min.
- 4) Stop vehicle and run engine at idle for 2 min.
- 5) Check DTC in "DTC" mode and pending DTC in "ON BOARD TEST" or "PENDING DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is there DTC(s) other than HO2S-1 (DTC P0130)?	Go to applicable DTC Diag. Flow Table.	Go to Step 3.
3	 Connect scan tool to DLC with ignition switch OFF. Warm up engine to normal operating temperature and keep it at 2000 r/min. for 60 sec. Repeat racing engine (Repeat depressing accelerator pedal 5 to 6 times continuously and take foot off from pedal to enrich and enlean A/F mixture). See Fig. 1 and 2. Does HO2S-1 output voltage deflect between 0.3 V and over 0.6 V repeatedly? 	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Check "R" and "G" wires for open and short, and connections for poor connection. If wires and connections are OK, replace HO2S-1.

Fig. 1 for Step 3

Fig. 2 for Step 3

DTC P0133 HEATED OXYGEN SENSOR (HO2S) CIRCUIT SLOW RESPONSE (SENSOR-1)

WIRING DIAGRAM/CIRCUIT DESCRIPTION – Refer to DTC P0130 section.

DTC DETECTING CONDITION	POSSIBLE CAUSE
 When running at specified idle speed after engine warmed up and running at specified vehicle speed, response time (time to change from lean to rich or from rich to lean) of HO2S-1 output voltage is about 1 sec. at minimum or average time of 1 cycle is 5 sec. at minimum. See. Fig. 1 2 driving cycle detection logic, Monitoring once/1 driving. 	 Heated oxygen sensor-1 malfunction

DTC CONFIRMATION PROCEDURE - Refer to DTC P0130 section.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is there DTC(s) other than HO2S-1 (DTC P0133)?	Go to applicable DTC Diag. Flow Table.	Replace HO2S-1.

DTC P0134 HEATED OXYGEN SENSOR (HO2S) CIRCUIT NO ACTIVITY DETECTED (SENSOR-1)

WIRING DIAGRAM/CIRCUIT DESCRIPTION – Refer to DTC P0130 section.

DTC DETECTING CONDITION	POSSIBLE CAUSE
 Engine warmed up. While running under other than high load and high engine speed conditions or at specified idle speed (engine is in closed loop condition), HO2S-1 output voltage is high or low continuously. * 2 driving cycle detection logic, Continuous monitoring. 	 "G" or "R" circuit open or short Heated oxygen sensor malfunction Fuel system malfunction Exhaust gas leakage
5	

DTC CONFIRMATION PROCEDURE - Refer to DTC P0130 section.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is there DTC(s) other than Fuel system (DTC P0171/P0172) and HO2S-1 (DTC P0134)?	Go to applicable DTC Diag. Flow Table.	Go to Step 3.
3	 Check HO2S-1 and Its Circuit. 1) Connect scan tool to DLC with ignition switch OFF. 2) Warm up engine to normal operating temperature and keep it at 2000 r/min. for 60 sec. 3) Repeat racing engine (Repeat depressing accelerator pedal 5 to 6 times continuously and take foot off from pedal to enrich and enlean A/F mixture). Does HO2S-1 output voltage deflect between 0.3 V and over 0.6 V repeatedly? 	Go to DTC P0171 and P0172 Diag. Flow Table (Fuel System Check).	Check "R" and "G" wires for open and short, and connections for poor connection. If wires and connections are OK, replace HO2S-1.

DTC P0135 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT MALFUNCTION (SENSOR-1)

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC will set when A or B condition is met.	 HO2S-1 heater circuit open or shorted to ground
A:	 ECM (PCM) malfunction
 Low voltage at terminal C01-8 when engine is 	
running at high load.	
B:	
 High voltage at terminal C01-8 when engine is 	
running under condition other than above.	
st 2 driving cycle detection logic, Continuous	
monitoring.	

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester.
- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON, start engine and keep it at idle for 1 min.
- 3) Start vehicle and depress accelerator pedal fully for 5 sec. or longer.
- 4) Stop vehicle.
- 5) Check DTC in "DTC" mode and pending DTC in "ON BOARD TEST" or "PENDING DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check Heater for Operation. 1) Check voltage at terminal C01-8. See Fig. 1. 2) Warm up engine to normal operating temperature. 3) Stop engine. 4) Turn ignition switch ON and Check voltage at terminal C01-8. See Fig. 1. Voltage should be over 10 V. 5) Start engine, run it at idle and check voltage at the same terminal. Voltage should be below 1.9 V. Are check results are specified? 	Intermittent trouble Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 3.
3	 Check Heater of Sensor-1. 1) Disconnect HO2S-1 coupler with ignition switch OFF. 2) Check for proper connection to HO2S-1 at "B/W" and "P/B" wire terminals. 3) If OK, then check heater resistance. See Fig. 2. Is it 11.7 – 14.3 Ω at 20°C, 68°F? 	"P/B" wire open or shorted to ground or poor connection at C01-8. If wire and connection are OK, substitute a known-good ECM (PCM) and recheck.	Replace HO2S-1.

Fig. 1 for Step 2

Fig. 2 for Step 3

C01-8

DTC P0136 HEATED OXYGEN SENSOR (HO2S) CIRCUIT MALFUNCTION (SENSOR-2)

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC will set when A or B condition is detected.A. Max. output voltage of HO2S-2 is lower than specified value or Min. output voltage is higher than specified value while vehicle driving.	 Exhaust gas leakage "G" or "R" circuit open or short Heated oxygen sensor-2 malfunction Fuel system malfunction
 B. Engine is warmed up and HO2S-2 voltage is 4.5 V or more. (circuit open) * 2 driving cycle detection logic, monitoring once/1 driving. 	

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester, on a level road.
- 1) Turn ignition switch OFF.

Clear DTC with ignition switch ON, check vehicle and environmental condition for:

- Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)

- Ambient temp.: –10°C, 14°F or higher
- Intake air temp.: 70°C, 158°F or lower
- No exhaust gas leakage and loose connection
- 2) Warm up engine to normal operating temperature.
- 3) Drive vehicle under usual driving condition for 5 min. and check HO2S-2 output voltage and "short term fuel trim" with "Data List" mode on scan tool, and write it down.
- 4) Stop vehicle (don't turn ignition switch OFF).
- 5) Increase vehicle speed to higher than 20 mph, 32 km/h and then stop vehicle.
- 6) Repeat above steps 5) 4 times.
- 7) Increase vehicle speed to about 50 mph (80 km/h) in 3rd gear or 2 range.
- 8) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 10sec. or more.
- 9) Stop vehicle (don't turn ignition switch OFF) and run engine at idle for 2 min. After this step 9), if "Oxygen Sensor Monitoring TEST COMPLETED" is displayed in "READINESS TESTS" mode and DTC is not displayed in "DTC" mode, confirmation test is completed. If "TEST NOT COMPLTD" is still being displayed, proceed to next step 10).
- 10) Drive vehicle under usual driving condition for 10 min. (or vehicle is at a stop and run engine at idle for 10 min. or longer)
- 11) Stop vehicle (don't turn ignition switch OFF). Confirm test results according to "Test Result Confirmation Flow Table" in "DTC CONFIRMATION PROCEDURE" of DTC P0420.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Check exhaust system for leakage, loose connection and damage. Is it good condition?	Go to Step 3.	Repair or replace.
3	Check HO2S-2 and Its Circuit. Was HO2S-2 output voltage indicated on scan tool in step 3) of DTC confirmation test less than 1.275 V?	Go to Step 4.	"Lg/B" or "R" circuit open or HO2S-2 malfunction.
4	Check Short Term Fuel Trim. Did short term fuel trim very within –20 – +20% range in step 3) of DTC confirmation test?	Check "R" and "Lg/B" wire for open and short, and connection for poor connection. If wire and connection are OK, replace HO2S-2.	Check fuel system. Go to DTC P0171/P0172 Diag. Flow Table.

DTC P0141 HEATED OXYGEN SENSOR (HO2S) HEATER CIRCUIT MALFUNCTION (SENSOR-2)

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC will set when A or B condition it met.	 HO2S-2 heater circuit open or shorted
A. Low voltage at terminal C02-19 for specified time after engine	to ground
start or while engine running at high load.	 ECM (PCM) malfunction
B. High voltage at terminal C02-19 while engine running under	
other than above condition.	
st 2 driving cycle detection logic, continuous monitoring.	

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF once and then ON.
- 2) Clear DTC, start engine and warm up engine to normal operating temperature.
- 3) Keep it at 2000 r/min for 2 min.
- 4) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check HO2S-2 Heater and Its Circuit. 1) Warm up engine to normal operating temperature. 2) Stop engine. 3) Turn ignition switch ON and check voltage at terminal CO2-19 See Fig. 1. Voltage should be over 10 V. 4) Start engine, run it at idle and check voltage at the same terminal after 1 min. from engine start. Voltage should be below 1.9 V. Are check result as specified? 	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 3.
3	 Check Heater or Sensor-2. 1) Disconnect HO2S-2 coupler with ignition switch OFF. 2) Check for proper connection to HO2S-2 at "B/W" and "Lg/B" wire terminals. 3) If OK, then check heater resistance. Is it 11.7 – 14.3 Ω at 20°C, 68°F? 	"Lg/B" wire open or shorted to ground or poor connection at C02-19. If wire and connection are OK, substitute a known- good ECM (PCM) and recheck.	Replace HO2S-2.

Fig. 1 for Step 2

(HEREFE 田田 C02-19

DTC P0171 FUEL SYSTEM TOO LEAN DTC P0172 FUEL SYSTEM TOO RICH CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 When following condition occurs while engine running under closed loop condition. Air/fuel ratio too lean (Total fuel trim (short and long terms added) is) or Air/fuel ratio too rich (Total fuel trim is less than -30%) 2 driving cycle detection logic, continuous monitoring. 	 Vacuum leaks (air drawn in). Exhaust gas leakage. Heated oxygen sensor-1 circuit malfunction. Fuel pressure out of specification. Fuel injector malfunction (clogged or leakage). MAP sensor poor performance. ECT sensor poor performance. IAT sensor poor performance. TP sensor poor performance. EVAP control system malfunction.
 (Total fuel trim (short and long terms added) is more than 30% or Air/fuel ratio too rich (Total fuel trim is less than -30%) * 2 driving cycle detection logic, continuous monitoring. 	 Fuel pressure out of specification. Fuel injector malfunction (clogged or leakage). MAP sensor poor performance. ECT sensor poor performance. IAT sensor poor performance. TP sensor poor performance. EVAP control system malfunction. PCV valve malfunction.

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester on a level road.
- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Check vehicle and environmental condition for:
 - Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
 - Ambient temp.: -10°C, 14°F or higher
 - Intake air temp.: 70°C, 158°F or lower
- 4) Start engine and drive vehicle under usual driving condition (described in DTC confirmation procedure of DTC P0136) for 5 min. or longer and until engine is warmed up to normal operating temperature.
- 5) Keep vehicle speed at 30 40 mph, 50 60 km/h in 5th gear or "D" range for 5 min. or more.
- 6) Stop vehicle (do not turn ignition switch OFF).
- 7) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is there DTC(s) other than fuel system (DTC P0171/P0172)?	Go to applicable DTC Diag. Flow Table.	Go to Step 3.
3	 Check HO2S-1 Output Voltage. 1) Connect scan tool to DLC with ignition switch OFF. 2) Warm up engine to normal operating temperature and keep it at 2000 r/min. for 60 sec. 3) Repeat racing engine (Repeat depressing accelerator pedal 5 to 6 times continuously and take foot off from pedal to enrich and enlean A/F mixture). See Fig. 1. Does HO2S-1 output voltage deflect between below 0.3 V and over 0.6 V repeatedly? 	Go to Step 4.	Go to DTC P0130 Diag. Flow Table (HO2S-1 circuit check).
4	 Check Fuel Pressure (Refer to section 6E1 for details). 1) Release fuel pressure from fuel feed line. 2) Install fuel pressure gauge. 3) Check fuel pressure. See Fig. 2. With fuel pump operating and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg/cm², 22.7 – 29.9 psi. At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg/cm², 12.8 – 20.0 psi. Is measured value as specified? 	Go to Step 5.	Go to Diag. Flow Table B-3 Fuel Pressure Check.
5	 Check Fuel Injectors and Circuit. 1) Turn ignition switch OFF and disconnect fuel injector connector. 2) Check for proper connection to fuel injector at each terminals. 3) If OK, then check injector resistance. See Fig. 3. Injector resistance: 0.5 – 1.5 Ω at 20°C (68°F) 4) Connect injector, connector. 5) Check that fuel is injected out in conical shape from fuel injector when running engine. 6) Check injector for fuel leakage after engine stop. Fuel leakage: Less than 1 drop/min. 	Go to Step 6.	Check injector circuit or replace fuel injector.
6	 Check EVAP Canister Purge Valve. 1) Disconnect purge hose (1) from EVAP canister. 2) Place finger against the end of disconnected hose. 3) Check that vacuum is not felt there when engine is cool and running at idle. See Fig. 4. Is vacuum felt? 	Check EVAP control system (See Section 6E1).	Go to Step 7.
7	Check intake manifold absolute pressure sensor for performance (See DTC P0105 Diag. Flow Table). Is it in good condition?	Go to Step 8.	Repair or replace.

STEP	ACTION	YES	NO
8	Check engine coolant temp. sensor for performance	Go to Step 9.	Replace engine
	(See Section 6E1).		coolant temp. sensor.
	Is it in good condition?		
9	Check intake air temp. sensor for performance	Go to Step 10.	Replace intake air
	(See Section 6E1).		temp. sensor.
	Is it in good condition?		
10	Check throttle position sensor for performance (See	Go to Step 11.	Replace throttle
	Step 4 of DTC P0121 Diag. Flow Table).		position sensor.
	Is it in good condition?		
11	Check PCV valve for valve clogging (See Section	Substitute a known-	Replace PCV valve.
	6E1).	good ECM (PCM) and	
	Is it good condition?	recheck.	

Fig. 1 for Step 3

Fig. 2 for Step 4

Throttle body
 Fuel feed hose

Fig. 3 for Step 5

Fig. 4 for Step 6

DTC P0300 RANDOM MISFIRE DETECTED (Misfire detected at 2 or more cylinders) DTC P0301 CYLINDER 1 MISFIRE DETECTED DTC P0302 CYLINDER 2 MISFIRE DETECTED

DTC P0303 CYLINDER 3 MISFIRE DETECTED

CIRCUIT DESCRIPTION

ECM (PCM) monitors crankshaft revolution speed and engine speed via the crankshaft position sensor and cylinder No. via the camshaft position sensor. Then it calculates the change in the crankshaft revolution speed and from how many times such change occurred in every 200 or 1000 engine revolutions, it detects occurrence of misfire. When ECM (PCM) detects a misfire (misfire rate per 200 revolutions) which can cause overheat and damage to the three way catalytic converter, it makes the malfunction indicator lamp (MIL) flash as long as misfire occurs at that rate.

After that, however, when the misfire rate drops, MIL remains ON until it has been judged as normal 3 times under the same driving conditions.

Also, when ECM (PCM) detects a misfire (misfire rate per 1000 revolutions) which will not cause damage to three way catalytic converter but can cause exhaust emission to be deteriorated, it makes MIL light according to the 2 driving cycle detection logic.

DTC DETECTING CONDITION	POSSIBLE CAUSE
 Engine under other than high revolution condition 	 Engine overheating
 Not on rough road 	 Vacuum leaks (air inhaling) from air intake system
 Engine speed changing rate Manifold absolute pressure changing rate Throttle opening changing rate Misfire rate per 200 or 1000 engine revolutions (how much and how often crankshaft revolution speed changes) is higher than specified value 	 Ignition system malfunction (spark plug(s), high- tension cord(s), ignition coil assembly) Fuel pressure out of specification Fuel injector malfunction (clogged or leakage) Engine compression out of specification Valve lash (clearance) out of specification Manifold absolute pressure sensor malfunction Engine coolant temp. sensor malfunction
	 PCV valve malfunction
	 EVAP control system malfunction

DTC CONFIRMATION PROCEDURE

WARNING:

• When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.

- Road test should be carried out with 2 persons, a driver and a tester.
- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Check vehicle and environmental condition for:
 - Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
 - Ambient temp.: -10° C, 14° F or higher
 - Intake air temp.: 70°C, 158°F or lower
 - Engine coolant temp.: $-10 110^{\circ}$ C, $14 230^{\circ}$ F
- 4) Start engine and keep it at idle for 2 min. or more.
- 5) Check DTC in "DTC" mode and pending DTC in "ON BOARD TEST" or "PENDING DTC" mode.
- 6) If DTC is not detected at idle, consult usual driving based on information obtained in "Customer complaint analysis" and "Freeze frame data check".

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is there DTC other than Fuel system (DTC P0171/P0172) and misfire (DTC P0300-P0303)?	Go to applicable DTC Diag. Flow Table.	Go to Step 3.
3	 Check Ignition System. 1) Remove spark plugs and check them for; Air gap: 1.0 – 1.1 mm (0.040 – 0.043 in.) See Fig. 1. Carbon deposits Insulator damage Plug type If abnormality is found, adjust, clean or replace. 2) Disconnect injector connector. See Fig. 2. 3) Connect spark plugs to high tension cords and then ground spark plugs. 4) Crank engine and check that each spark plug sparks. Are above check results satisfactory? 	Go to Step 4.	Check ignition system parts (Refer to Section 6F).
4	 Check Fuel Pressure (Refer to Section 6E1 for details). 1) Release fuel pressure from fuel feed line. 2) Install fuel pressure gauge. See Fig. 3. 3) Check fuel pressure. With fuel pump operating and engine at stop : 160 – 210 kPa, 1.6 – 2.1 kg/cm², 22.7 – 29.9 psi. At specified idle speed : 90 – 140 kPa, 0.9 – 1.4 kg/cm², 12.8 – 20.0 psi. Is measured value as specified? 	Go to Step 5.	Go to Diag. Flow Table B-3 fuel pressure check.
5	 Check Fuel Injector and Circuit. 1) Turn ignition switch OFF and disconnect fuel injector connector. 2) Check for proper connection to fuel injector at each terminal. 3) If OK, then check injector resistance. See Fig. 4. Injector resistance: 0.5 – 1.5 Ω at 20°C (68°F). 4) Connect injector connector. 5) Check that fuel is injected out in conical shape from fuel injector when running engine. 6) Check injector for fuel leakage after engine stop. Fuel leakage: Less than 1 drop/min. Is check result satisfactory? 	Go to Step 6.	Check injector circuit or replace fuel injector.

STEP	ACTION	YES	NO
6	Check PCV valve for clogging (See Section 6E1). Is it in good condition?	Go to Step 7.	Replace PCV valve.
7	 Check EVAP Canister Purge Valve for Closing. 1) Disconnect purge hose (1) from EVAP canister. 2) Place finger against the end of disconnected hose. 3) Check that vacuum is not felt there, when engine is cool and running at idle. See Fig. 5. Is vacuum felt? 	Check EVAP control system (See Section 6E1).	Go to Step 8.
8	Check intake manifold pressure sensor for performance (See Section 6E1). Is it in good condition?	Go to Step 9.	Repair or replace.
9	Check engine coolant temp. sensor for performance (See Section 6E1). Is it in good condition?	Go to Step 10.	Replace engine coolant temp. sensor.
10	 Check parts or system which can cause engine rough idle or poor performance. – Engine compression (See Section 6A). – Valve lash (See Section 6A). – Valve timing (Timing belt installation. See Section 6A). Are they in good condition? 	Check wire harness and connection of ECM (PCM) ground, ignition system and fuel injector for intermittent open and short.	Repair or replace.

Fig. 1 for Step 3

Fig. 2 for Step 3

Fig. 3 for Step 4

Throttle body
 Fuel feed hose

Fig. 4 for Step 5

DTC P0335 CRANKSHAFT POSITION (CKP) SENSOR CIRCUIT MALFUNCTION CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 No CKP sensor signal during 1 revolution of camshaft. 	 CKP sensor circuit open or short. Crankshaft timing belt pulley teeth damaged. CKP sensor malfunction, foreign material being attached or improper installation. ECM (PCM) malfunction.

Reference

Connect oscilloscope between terminals C01-3 (+) and C01-11 (–) of ECM (PCM) connector connected to ECM (PCM) and check CKP sensor signal.

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and keep it at idle for 1 min.
- 2) Select "DTC" mode on scan tool and check DTC.
INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check CKP Sensor for Resistance. 1) Disconnect CKP sensor connector with ignition switch OFF. 2) Then check for proper connection to CKP sensor at "W/B" and "W/R" wire terminals. 3) If OK, measure sensor resistance between terminals. See Fig. 1. CKP sensor resistance: 360 – 460 Ω	Go to Step 3.	Replace CKP sensor.
3	Check visually CKP sensor and pulley for the following. See Fig. 2. • Damage • No foreign material attached. • Correct installation. Are they in good condition?	"W/B" or "W/R" wire open or shorted to ground, or poor connection at C01-3 or C01-11. If wire and connection are OK, intermittent trouble or faulty ECM (PCM). Recheck for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Clean, repair or replace.

Fig. 1 for Step 2

Fig. 2 for Step 3

DTC P0340 CAMSHAFT POSITION (CMP) SENSOR CIRCUIT MALFUNCTION CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 No CMP sensor signal for 2 seconds at engine cranking (CKP sensor signal is inputted). 	 CMP sensor circuit open or short. Signal rotor teeth damaged. CMP sensor malfunction, foreign material being attached or improper installation. ECM (PCM) malfunction.

Reference

Connect oscilloscope between terminals C01-2 and C01-10 of ECM (PCM) connector connected to ECM (PCM) and check CMP sensor signal.

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC.
- 2) Start engine and keep it at idle for 1 min.
- 3) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Is DTC P1500 (Engine starter signal circuit malfunction) detected?	Go to DTC P1500 Diag. Flow Table.	Go to Step 3.
3	 Check CMP Sensor for Resistance. 1) Measure resistance of CMP sensor by referring to "CMP SENSOR (PICK UP COIL) RESISTANCE" in SECTION 6F. Is resistance within specified value? 	Go to Step 4.	Faulty CMP sensor.
4	 Check Wire Harness. 1) With ignition switch at OFF position, disconnect ECM (PCM) electrical connectors. 2) Measure resistance from terminal "C01-2" to "C01-10" of ECM (PCM) connector. See Fig. 1. Is resistance within 185 – 275 Ω at 20°C (68°F)? 	Go to Step 5.	"W" or "Or" wire open or short. Poor connection of CMP sensor connector terminal.
5	 Check Air Gap Between Rotor Tooth and Sensor. See Fig. 2. 1) Remove Distributor cap. 2) Visually inspect CMP sensor signal rotor for damage. 3) Measure air gap by referring "SIGNAL ROTOR AIR GAP" in Section 6F. Was any damage found? 	Faulty CMP sensor signal rotor.	Poor connection of ECM (PCM) connector terminal. If OK, substitute a known-good ECM (PCM) and recheck CMP.

Fig. 1 for Step 3

Fig. 2 for Step 5

"a": Air gap

DTC P0420 CATALYST SYSTEM EFFICIENCY BELOW THRESHOLD CIRCUIT DESCRIPTION

ECM (PCM) monitors oxygen concentration in the exhaust gas which has passed the three way catalytic converter by HO2S-2.

When the catalyst is functioning properly, the variation cycle of HO2S-2 output voltage (oxygen concentration) is slower than that of HO2S-1 output voltage because of the amount of oxygen in the exhaust gas which has been stored in the catalyst.

Reference

DTC DETECTING CONDITION	POSSIBLE CAUSE
 While vehicle running at constant speed under other than high load. Time from rich or lean switching command is output till HO2S-2 output voltage crosses 0.45 V is less than specified value. 2 driving cycle detection logic, monitoring once/1 driving. 	 Exhaust gas leak Three way catalytic converter malfunction Fuel system malfunction HO2S-2 malfunction HO2S-1 malfunction

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and tester, on a level road.
- 1) Turn ignition switch OFF.

Clear DTC with ignition switch ON, check vehicle and environmental condition for:

- Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
- Ambient temp.: $-10^{\circ}C$, $14^{\circ}F$ or higher
- Intake air temp.: 70°C, 158°F or lower
- Engine coolant temp.: 70 110°C, 158 230°F
- Start engine and drive vehicle at 40 47 mph, 65 75 km/h for 15 min. or longer. While this driving, if "Catalyst Monitoring TEST COMPLETED" is displayed in "READINESS TESTS" mode and DTC is not displayed in "DTC" mode, confirmation test is completed. If "TEST NOT COMPLTD" is still being displayed, continue test driving.
- 3) Decrease vehicle speed at 28 34 mph, 45 55 km/h, and hold throttle valve at that opening position for 2 min. and confirm that short term fuel trim vary within -20% - +20% range.
- 4) Stop vehicle (do not turn ignition switch OFF) and confirm test results according to following "Test Result Confirmation Flow Table".

Test Result Confirmation Flow Table

STEP	ACTION	YES	NO
1	Check DTC in "DTC" mode and pending DTC in "ON BOARD TEST" or "PENDING DTC" mode.	Proceed to applicable DTC Diag. Flow Table.	Go to Step 2.
	Is DTC or pending DTC displayed?	5	
2	Set scan tool to "READINESS TESTS" mode and	No DTC is detected	Repeat DTC
	check if testing has been completed.	(confirmation test is	confirmation
	Is test completed?	completed).	procedure.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Check Short Term Fuel Trim. Did short term fuel trim vary within –20% –+20% range in step 3) of DTC confirmation test?	Go to Step 3.	Check fuel system. Go to DTC P0171/P0172 Diag. Flow Table.
3	Check HO2S-2 for Output Voltage. Perform steps 1) through 9) of DTC confirmation procedure for DTC P0136 (HO2S-2 malfunction) and check output voltage of HO2S-2 then. Is over 0.6 V and below 0.3 V indicated?	Replace three way catalytic converter.	Check "G" and "R" wires for open and short, and connections for poor connection. If wires and connections are OK, replace HO2S-2.

DTC P0443 PURGE CONTROL VALVE CIRCUIT MALFUNCTION CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
Canister Purge control valve circuit is opened or shorted.	 "R/G" circuit open or short "W/BI" circuit open Canister purge valve malfunction

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC with ignition switch ON.
- 2) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Check EVAP canister purge valve operation	"R/G" circuit open or	Replace EVAP canister
	1) With ignition switch OFF, disconnect coupler	short.	purge valve.
	from canister purge valve.		
	2) Check resistance of EVAP canister purge		
	valve. See Fig. 1.		
	Resistance between		
	two terminals : $30 - 34 \Omega$ at 20° C (68°F)		
	Resistance between		
	terminal and body : 1M Ω or higher		
	Is it as specified?		

Fig. 1 for Step 1

DTC P0480 RADIATOR FAN CONTROL SYSTEM MALFUNCTION CIRCUIT DESCRIPTION

DTC DETECTING CONDITION POSSIBLE CAUSE	
• Low voltage at terminal C02-20 when engine coolant	 "B/W" or "BI" circuit open or short
temp. is below 91°C, 195°F.	 Radiator fan relay malfunction
\pm 2 driving cycle detection logic, continuous monitoring.	 ECM (PCM) malfunction

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Warm up engine until radiator cooling fan starts to operate.
- 4) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check Radiator Cooling Fan Relay and Its Circuit. 1) Turn ignition switch ON. 2) Check for voltage at terminal C02-20 of ECM (PCM) connector connected, under following condition. See Fig. 1. When engine coolant temp. is lower than 96°C, 205°F and A/C switch turns OFF: 10 – 14 V Is voltage as specified? 	Intermittent trouble or faulty ECM (PCM). Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 3.
3	 Check Radiator Fan Control Relay. 1) Turn ignition switch OFF and remove radiator fan relay. 2) Check for proper connection to the relay at "B/W" and "BI" wire terminals. 3) If OK, then measure resistance between terminals a and b. See Fig. 2. Is it 100 – 120 Ω? 	"B/W" or "BI" circuit open or short. If wires and connections are OK, substitute a known-good ECM (PCM) and recheck.	Replace radiator fan relay.

Fig. 1 for Step 2

DTC P0500 VEHICLE SPEED SENSOR (VSS) MALFUNCTION (M/T)

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
 VSS signal not inputted while vehicle running in "D" 	 "B/BI" circuit open
range or during fuel cut at deceleration.	 "Y/G" circuit open or short
st 2 driving cycle detection logic, continuous monitoring	 VSS malfunction
	 ECM malfunction
	 Speedometer cable malfunction

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester.
- 1) Clear DTC and warm up engine to normal operating temperature.
- 2) Increase vehicle speed to 50 mph, 80 km/h in 3rd gear or "2" range while observing vehicle speed displayed on scan tool.
- 3) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 4 sec. or more.
- 4) Check pending DTC and DTC.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Does speedometer indicate vehicle speed?	Go to Step 3.	Speedometer cable disconnected or broken.
3	 Check VSS and Its Circuit. 1) Disconnect ECM connector with ignition switch OFF. 2) Check for proper connection to ECM at terminal C03-2. 3) If OK, then connect ohmmeter between terminal C03-2 of ECM connector and body ground. See Fig. 1. 4) Hoist front end of vehicle and lock front right tire. 5) Turn front left tire slowly. Does ohmmeter indicator deflect between 0 and ∞ a few times while tire is turned one revolution? 	Intermittent trouble or faulty ECM. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 4.
4	 Check VSS. 1) Remove combination meter. 2) Connect ohmmeter between "VSS" terminal (No.10) and "GND" (No.4) terminal of combination meter and turn cable joint of speedometer with a screwdriver. Ohmmeter indicator should move back and forth between 0 (zero) and ∞ (infinity) 4 times while cable joint is turned one full revolution. See Fig. 2. Is it in good condition? 	"Y/G" or "B/BI" wire open or short, or poor connector connection.	Replace VSS.

Fig. 1 for Step 3

Fig. 2 for Step 4

DTC P0500 VEHICLE SPEED SENSOR (VSS) MALFUNCTION FOR A/T VEHICLE (A/T)

CIRCUIT DESCRIPTION – Refer to Section 6E1 for VSS operation.

DTC DETECTING CONDITION	POSSIBLE CAUSE
 While fuel is kept cut at lower than 4000 r/min for 	 "BI" or "P" circuit open or short.
longer than 4 sec.	 Vehicle speed sensor malfunction.
 VSS signal not inputted. 	• Foreign material being attached or sensor installed
st 2 driving cycle detection logic, continuous	improperly.
monitoring.	 Gear damaged.

DTC CONFIRMATION PROCEDURE

WARNING:

- When performing a road test, select a place where there is no traffic or possibility of a traffic accident and be very careful during testing to avoid occurrence of an accident.
- Road test should be carried out with 2 persons, a driver and a tester, on a level road.
- 1) Turn ignition switch OFF and then ON.
- 2) Clear DTC and warm up engine to normal operating temperature.
- 3) Increase vehicle speed to 50 mph, 80 km/h in "2" range.
- 4) Release accelerator pedal and with engine brake applied, keep vehicle coasting (fuel cut condition) for 4 sec. or more.
- 5) Stop vehicle and check DTC and pending DTC.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check VSS for Resistance. 1) Disconnect VSS connection with ignition switch OFF. 2) Check for proper connection to VSS at "BI" and "P" wire terminals. 3) If OK, then check resistance of VSS. See Fig. 1. Resistance between terminals : 100 – 300 Ω Resistance between terminal and transmission : 1 MΩ or more Are check result satisfactory? 	Go to Step 3.	Replace VSS.
3	Check Visually VSS and Counter Shaft Gear for the Following. See Fig. 2. No damage No foreign material attached Correct installation Are they in good condition?	"BI" or "P" wire open or shorted to ground or poor C03-2 or C03-13 connection. If wires and connections are OK, intermittent trouble or faulty PCM. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Clean, repair or replace.

Fig. 1 for Step 2

Fig. 2 for Step 3

DTC P0505 IDLE CONTROL SYSTEM MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC will set when A, B or C condition is met.	Malajusted accelerater cable
A: Throttle opening change is small as compared with	 Poor movement of throttle valve
electrically live time.	 Closed throttle position switch malfunction
B: Throttle valve opening is not within its target range	 Idle speed control actuator malfunction
with CTP switch ON.	 Idle speed control relay malfunction
C: Drive voltage exists though ECM (PCM) is not	● "Gr/B", "Gr/Y", "Gr", "Gr/R", "Gr/G", "Lg" or "B/BI"
outputting ISC drive command.	circuit open or short
	 Throttle position sensor malfunction
	 ECM (PCM) malfunction

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Start cold engine.
- 4) Run it idle for 5 min.
- 5) Select "DTC" mode on scan tool and check DTC.

NOTE:

If engine speed changes up and down when engine speed is increased by opening throttle valve more than half but not changing its opening, it is possible that closed throttle position switch is malfunctioning.

DTC P0505

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check Idle Control System. 1) Connect SUZUKI scan tool to DLC with ignition switch OFF, set parking brake and block drive wheels. 2) Warm up engine to normal operating temperature. 3) Clear DTC and select "MISC TEST" mode on SUZUKI scan tool. Is it possible to control (increase and reduce) engine idle speed by using SUZUKI scan tool? 	Check TP sensor (Go to DTC P0121 Flow Table) If TP sensor is OK, intermittent trouble or faulty ECM (PCM). Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 3.
3	 Check ISC Relay. 1) Ignition switch OFF and remove ISC relay ("ISCA"). 2) Check for proper connection to ISC relay at terminals 3 and 4. 3) Check resistance between each two terminals. Between terminals 1 and 2: Infinity Between terminals 3 and 4: 100 – 120 Ω 4) Check that there is continuity between terminals 1 and 2 when battery is connected to terminals 3 and 4. Is ISC relay in good condition? 	Go to Step 4.	Replace ISC relay.
4	Check Idle Speed Control Actuator. 1) Check ISC actuator operation by referring to ISC ACTUATOR INSPECTION in Section 6. Is it good condition?	Check "Gr/B", "Gr/Y", "Gr" and "Gr/R" circuit for open and short. If wires and connections are OK, substitute a known-good ECM (PCM) and recheck.	Replace throttle lower body with ISC actuator.

Fig. 3 for Step 3

DTC P0510 CLOSED THROTTLE POSITION (CTP) SWITCH MALFUNCTION

CIRCUIT DESCRIPTION – Refer to DTC P0505 section.

DTC DETECTING CONDITION	POSSIBLE CAUSE
 Even when vehicle is started from stop and accelerated to specified vehicle speed, CTP switch does not turn from ON to OFF (or from OFF to ON). 2 driving cycle detection logic, continuous monitoring 	 "Lg", "Gr/G" or "B/BI" circuit open or short CTP switch malfunction ECM (PCM) malfunction

NOTE:

When DTC P0105, P0120 and/or P0510 are indicated together, it is possible that "Lg" circuit is open.

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF, clear DTC with ignition switch ON and start engine.
- 2) Increase vehicle speed to 20 mph, 32 km/h and then stop vehicle.
- 3) Repeat above step 2) 15 times.
- 4) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	 Check CTP Switch Operation. 1) Connect SUZUKI scan tool to DLC with ignition switch OFF. 2) Turn ignition switch ON. Does CTP switch operate properly under following conditions respectively? Condition "A": ON displayed on scan tool Condition "B": OFF displayed on scan tool Is test result satisfactory? 	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection in Section 0A.	Go to Step 3.
3	 Check CTP switch. 1) Arrange 3 new 1.5 V batteries in series (4.5 V in total). 2) Connect these batteries to CTP switch terminals "4" and "5". 3) Under following each condition, check voltage between CTP switch terminals "6" and "5". Condition "A": 0 – 1 V Condition "B": 3.5 – 5.5 V Is measured voltage as specified? 	Check "Lg", "Gr/G" and "B/BI" wires and connections for open or short. If wires and connections are OK, substitute a known- good ECM (PCM) and recheck.	Replace ISC motor set (throttle lower body with ISC actuator).

Fig. 1 for Step 2

Fig. 2 for Step 3

DTC P0601 INTERNAL CONTROL MODULE MEMORY CHECK SUM ERROR

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC P0601: Data write error (or check sum error) when written into ECM (PCM) * 2 driving cycle detection logic, continuous monitoring.	ECM (PCM)

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON and then turn ignition switch OFF.
- 3) Start engine and run it at idle if possible.
- 4) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

INSPECTION

Substitute a known-good ECM (PCM) and recheck.

DTC P1250 EARLY FUEL EVAPORATION (EFE) HEATER CIRCUIT MALFUNCTION

CIRCUIT DESCRIPTION

DTC DETECTING CONDITION	POSSIBLE CAUSE	
 Voltage low at terminal C01-12 during engine 	 "Y/R", "W" or "W/B" circuit open or short 	
warming up	 EFE heater relay malfunction 	
or	 EFE heater malfunction 	
 Voltage high at terminal C01-12 after engine 	 ECM (PCM) malfunction 	
warming up		
st 2 driving cycle detection logic, continuous		
monitoring		

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Check vehicle and environmental condition for:
 - Altitude (barometric pressure): 2400 m, 8000 ft or less (560 mmHg, 75 kPa or more)
 - Ambient temp: -10°C, 14°F or higher
 - Intake air temp: 70°C, 158°F or lower
- 4) Start cool engine and warm it up to normal operating temperature.
- 5) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

INSPECTION

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Check EFE Heater and Its Circuit. Check for voltage at terminal C01-12 of ECM (PCM) connector connected, under following each condition. During engine warming up (Coolant temp.: Below 80°C, 176°F, Engine speed: Over 750 r/min): Over 1.0 V After warming up: Below 1.0 V Is each voltage as specified?	Intermittent trouble. Check for intermittent referring to "Intermittent and Poor Connection" in Section 0A.	Go to Step 3.
3	 Check EFE Heater Relay. 1) Turn OFF ignition switch and remove EFE heater relay ("PTC"). See Fig. 2. 2) Check for proper connection to relay at terminal 3 and 4. See Fig. 3. 3) Check resistance between each two terminals. Between terminals 1 and 2: Infinity Between terminals 3 and 4: 100 – 120 Ω 4) Check that there is continuity between terminals 1 and 2 when battery is connected to terminals 3 and 4. See Fig. 4. Is EFE heater relay in good condition? 	Go to Step 4.	Replace EFE heater relay.
4	 Check EFE Heater and Its Circuit. 1) Turn ignition switch OFF and disconnect ECM (PCM) connectors. 2) Check for proper connection to ECM (PCM) at terminals C02-25 and C01-12. 3) If OK, then measure resistance between terminal C01-12 and ground. Is it 0.5 – 30 Ω at 20°C (68°F)? 	"W", "Y/R" or "W/B" circuit open or short. If wire and connections are OK, substitute a known- good ECM (PCM) and recheck.	"W/B" circuit open or short. If wire and connections are OK, replace EFE heater.

Fig 1. for Step 4

Fig. 2 for Step 3

Fig. 3 for Step 3

Fig. 4 for Step 3

DTC P1450 BAROMETRIC PRESSURE SENSOR LOW/HIGH INPUT DTC P1451 BAROMETRIC PRESSURE SENSOR PERFORMANCE PROBLEM

WIRING DIAGRAM/CIRCUIT DESCRIPTION

Barometric pressure sensor is installed in ECM (PCM).

DTC DETECTING CONDITION	POSSIBLE CAUSE
DTC P1450:	 ECM (PCM) (barometric pressure sensor)
 Barometric pressure: 136 kPa 1025 mmHg or higher, or 	malfunction
33 kPa 250 mmHg or lower	
DTC P1451:	 Manifold absolute pressure sensor and its
 Vehicle stopped. 	circuit malfunction
 Engine cranking. 	 ECM (PCM) (barometric pressure sensor)
 Difference between barometric pressure and intake 	malfunction
manifold absolute pressure is 26 kPa, 200 mmHg or more.	
st 2 driving cycle detection logic, monitoring once/1 driving.	

DTC CONFIRMATION PROCEDURE

- 1) Turn ignition switch OFF.
- 2) Clear DTC with ignition switch ON.
- 3) Turn ignition switch ON for 2 sec., crank engine for 2 sec. and run it at idle for 1 min.
- 4) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

INSPECTION

DTC P1450:

Substitute a known-good ECM (PCM) and recheck.

DTC P1451:

NOTE:

Note that atmospheric pressure varies depending on weather conditions as well as altitude. Take that into consideration when performing these check.

STEP	ACTION	YES	NO
1	 Connect scan tool to DLC with ignition switch OFF. Turn ignition switch ON and select "DATA LIST" mode on scan tool. Check manifold absolute pressure. See Fig. 1. Is it barometric pressure (approx. 100 kPa, 760 mmHg) at sea level? 	Substitute a known- good ECM (PCM) and recheck.	Check intake manifold pressure sensor and its circuit. Go to P0105 DIAG. FLOW TABLE.

DTC P1500 ENGINE STARTER SIGNAL CIRCUIT MALFUNCTION CIRCUIT DESCRIPTION

M/T vehicle	W IG ST Ignition switch (starter switch)	→→→ B/Y → E53 C19 →→ B/Y → B/Y → 15 ↓ 15 ↓ 1	ECM B/Y J Starter
A/T vehicle Main fuse W/G W T	Ignition switch (starter switch)	Transmission range sensor (switch) /R65 B/Y6	B/Y
	C01-16		

DTC DETECTING CONDITION	POSSIBLE CAUSE
• High voltage at terminal C01-16 for 3 min. after engine	 "B/Y" circuit open
start.	 ECM (PCM) malfunction
• Low voltage at terminal C01-16 during starting engine.	
st 2 driving cycle detection logic, continuous monitoring.	

DTC CONFIRMATION PROCEDURE

1) Turn ignition switch OFF.

- 2) Clear DTC with ignition switch ON, crank engine and run it at idle for 3 min.
- 3) Check pending DTC in "ON BOARD TEST" or "PENDING DTC" mode and DTC in "DTC" mode.

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG.
			FLOW TABLE".
2	Check for voltage at terminal C01-16 of ECM	Poor C01-16	"B/Y" circuit open.
	(PCM) connector connected, under following	connection or	
	condition.	intermittent trouble.	
	While engine cranking : 6 – 10 V	Check for intermittent	
	After starting engine : 0 V	referring to "Intermittent	
	Is voltage as specified?	and Poor Connection"	
		in Section 0A.	
		If wire and connections	
		are OK, substitute a	
		known-good ECM (PCM)	
		and recheck.	

DTC P1510 ECM (PCM) BACK-UP POWER SUPPLY MALFUNCTION CIRCUIT DESCRIPTION

Battery voltage is supplied so that diagnostic trouble code memory, values for engine control learned by ECM (PCM), etc. are kept in ECM (PCM) even when the ignition switch is turned OFF.

DTC DETECTING CONDITION	POSSIBLE CAUSE	
• Low voltage at terminal C02-14 after starting engine.	• "W" circuit open	
	• ECIM (PCIM) malfunction	

DTC CONFIRMATION PROCEDURE

- 1) Clear DTC, start engine and run it at idle for 1 min.
- 2) Select "DTC" mode on scan tool and check DTC.

STEP	ACTION	YES	NO
1	Check for voltage at terminal C02-14 of ECM	Poor C02-14	"W" circuit open.
	(PCM) connector connected, under each	connection or	
	condition, ignition switch OFF and engine	intermittent trouble.	
	running.	Check for intermittent	
	Is it 10 – 14 V at each condition?	referring to "Intermittent	
		and Poor Connection"	
		in Section 0A.	
		If wire and connections	
		are OK, substitute a	
		known- good ECM	
		(PCM) and recheck.	

BLANK

TABLE B-1 FUEL INJECTOR CIRCUIT CHECK

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Injector Circuit Check 1) Check injector circuit for short. Is fuel injected from injector at ignition switch ON?	"Y/B" wire shorted to ground or faulty injector. If wire and injector is as specified respectively and then substitute known- good ECM (PCM) and recheck.	Go to Step 3.
3	 Injector Check 1) Check injector for fuel Injection referring to FUEL INJECTOR ON-VEHICLE INSPECTION in Section 6E1. Is fuel injected from injector at engine cranking? 	Go to Step 4.	Go to Step 5.
4	 Injector Leakage Check 1) Check injector for leaks referring to FUEL INJECTOR ON-VEHICLE INSPECTION in Section 6E1. Is it in good condition? 	Injector and its circuit are in good condition.	Faulty fuel injector.
5	Check Injector for Operating Sound.1) Using sound scope, check injector for operating sound at engine cranking.Is it detected?	Proceed to DIAG. FLOW TABLE B-2 and B-3.	Go to Step 6.

STEP	ACTION	YES	NO
6	Check Injector Resistor for Resistance.	"W/BI", "Y/G" or "Y/B"	Replace resistor.
	1) Disconnect resistor connector with ignition switch	wire open or poor	
	OFF.	C02-12 connection.	
	2) Check for proper connection to resistor at each	If wires and	
	terminals.	connections are OK,	
	3) If connection is OK, check resistance.	substitute a known-	
	Is resistance 1.9 – 2.1 Ω (at 20°C, 68°F)?	good ECM (PCM) and	
		recheck.	

TABLE B-2 FUEL PUMP AND ITS CIRCUIT CHECK

STEP	ACTION	YES	NO
1	Was "ENGINE DIAG. FLOW TABLE" performed?	Go to Step 2.	Go to "ENGINE DIAG. FLOW TABLE".
2	Check Fuel Pump Control System for Operation. See Fig. 1.	Fuel pump circuit	Go to Step 3.
	ON?	condition.	
3	 Check Fuel Pump for Operation. 1) Remove fuel pump relay from relay box with ignition switch OFF. 2) Check for proper connection to relay at each terminals. 3) If OK, using service wire, connect terminals E28-1 and E28-2 of relay connector. See Fig. 2. CAUTION: Check to make sure that connection is made between correct terminals. Wrong connection can cause damage to ECM (PCM), wire harness, etc. 	Go to Step 4.	"P", "B" or "W/BI" circuit open or fuel pump malfunction.
4	Is fuel pump heard to operate at ignition switch ON?		Depless fuel nume
4	 Check real runp Relay for Operation. Check resistance between each two terminals of fuel pump relay. See Fig.3. Between terminals "1" and "2": Infinity Between terminals "3" and "4": 100 – 120 Ω Check that there is continuity between terminals "1" and "2" when battery is connected to terminals "3" and "4". See Fig. 4. 	or poor C02-21 connection. If wire and connection are OK, substitute a known-good ECM (PCM) and	relay.

Fig. 4 for Step 4

TABLE B-3 FUEL PRESSURE CHECK

STEP	ACTION	YES	NO
1	 Check Fuel Pressure (Refer to Section 6E1 for details). 1) Release fuel pressure from fuel feed line. 2) Install fuel pressure gauge. 3) Check fuel pressure by repeating ignition switch ON and OFF. See Fig. 1. Is fuel pressure then 160 – 210 kPa (1.6 – 2.1 kg/cm², 22.7 – 29.9 psi)? 	Go to Step 2.	Go to Step 4.
2	Is 90 kPa (0.9 kg/cm ² , 12.8 psi) or higher fuel pressure retained for 1 minute after fuel pump is stopped at Step 1?	Normal fuel pressure.	Go to Step 3.
3	 Start engine and warm it up to normal operating temperature. Keep it running at specified idle speed. Is fuel pressure then within 90 – 140 kPa (0.9 – 1.4 kg/cm², 12.8 – 20.0 psi)? 	Normal fuel pressure.	 Clogged vacuum passage for fuel pressure regulator or Faulty fuel pressure regulator.
4	Is there fuel leakage from fuel feed line hose, pipe or their joint?	Fuel leakage from hose, pipe or joint.	Go to Step 10.
5	Was fuel pressure higher than specification in Step 1?	Go to Step 6.	Go to Step 7.
6	 Disconnect fuel return hose from throttle body and connect new return hose to it. Insert the other end of new return hose into approved gasoline container. Operate fuel pump. Is specified fuel pressure obtained then? 	Restricted fuel return hose or pipe.	Faulty fuel pressure regulator.
7	Was no fuel pressure supplied in Step 1?	Go to Step 8.	Go to Step 9.

STEP	ACTION	YES	NO
8	With fuel pump operated and fuel return hose blocked by pinching it, is fuel pressure applied?	Faulty fuel pressure regulator.	Shortage of fuel or fuel pump or its circuit defective (refer to B-2 FUEL PUMP ANDITS CIRCUIT CHECK).
9	 Operate fuel pump. With fuel return hose blocked by pinching it, check fuel pressure. Is it 450 kPa (4.5 kg/cm², 63.9 psi) or more? 	Faulty fuel pressure regulator.	 Clogged fuel filter, Restricted fuel feed hose or pipe, Faulty fuel pump or Fuel leakage from hose connection in fuel tank.
10	 Disconnect fuel return hose from throttle body and connect new return hose to it. Insert the other end of new return hose into approved gasoline container. Check again if specified pressure is retained. While doing so, does fuel come out of return hose? 	Faulty fuel pressure regulator.	 Fuel leakage from injector, Fuel leakage from between injector and throttle body, Faulty fuel pump (faulty check valve in fuel pump) or Fuel leakage from fuel pressure regulator diaphragm.

Fig. 1 for Step 1

1. Fuel pressure gauge & 3way joint

TABLE B-4 A/C SIGNAL CIRCUITS CHECK (VEHICLE WITH A/C)

STEP	ACTION	YES	NO
1	Check A/C (Input) Signal Circuit. 1) Check voltage at terminal C03-19. While engine running and A/C switch and/or heater blower switch OFF (A/C is not operating) : 10 – 14 V While engine running and both A/C switch and heater blower switch ON (A/C is operating) : About 0 V Are check results as specified?	Go to Step 2.	 "BI/R" wire open or short. Poor C03-19 connection. Poor A/C amplifier coupler connection or faulty A/C system.
2	Check A/C ON (Output) Signal Circuit. 1) Check voltage at terminal C03-17. While engine running and A/C switch and/or heater blower switch OFF (A/C is not operating) : About 0 V While engine running at idle speed and both A/C switch and heater blower switch ON (A/C is operating) : 10 – 14 V Are check results as specified?	A/C control signal circuits are in good condition.	 "Lg/R" wire open or short. Poor performance of ECT sensor, TP sensor. Engine start signal inputted or Poor C03-17 connection. If none of the above exists, substitute a known-good ECM (PCM) and recheck.

TABLE B-5POWER STEERING PRESSURE (PSP) SWITCH SIGNAL CIRCUIT
CHECK (IF EQUIPPED)

INSPECTION

STEP	ACTION	YES	NO
1	Check PSP Switch Signal Circuit.	PSP switch signal	"BI/W" circuit open or
	1) Connect SUZUKI scan tool to DLC with ignition	circuit is in good	short, PSP switch
	switch OFF.	condition.	malfunction or power
	2) Start engine and select "DATA LIST" mode on		steering system
	scan tool.		malfunction.
	3) Check PSP switch signal under following each		
	condition. See Fig. 1.		
	Engine running and steering		
	wheel at straight-ahead position : OFF		
	Engine running and steering wheel		
	turned to the right on left as far as it stops :ON		
	Is check result satisfactory?		

Fig. 1 for Step 1

SPECIAL TOOL

SECTION 6

ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G13)

NOTE:

For the details of this section, refer to same section of the Service Manual mentioned in the FOREWORD of this manual.